FEATURES

1.65 V to 3.6 V operation

Ultralow on resistance:
0.35Ω typical
0.5Ω max at 2.7 V supply
Excellent audio performance, ultralow distortion:
0.055Ω typical
0.09Ω max Ros flatness
High current carrying capability:
300 mA continuous
500 mA peak current at 3.3 V
Automotive temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Rail-to-rail switching operation
Typical power consumption (<0.1 $\boldsymbol{\mu W}$)

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN
SWITCHES SHOWN
FOR A LOGIC 1 INPUT
Figure 1.

PRODUCT HIGHLIGHTS

1. 0.6Ω over full temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
2. Compatible with 1.8 V CMOS logic.
3. High current handling capability (300 mA continuous current at 3.3 V).
4. Low THD + N (0.01\% typ).
5. Tiny SC70 package.

Table 1. ADG839 Truth Table

Logic	Switch 2 (S2)	Switch 1 (S1)
0	Off	On
1	On	Off

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADG839

TABLE OF CONTENTS

Specifications—2.7 V to 3.6 V ... 3	Typical Performance Characteristics .. 8
Specifications—2.3 V to 2.7 V .. 4	Terminology .. 11

Typical Performance Characteristics ... 8
Terminology.. 11
Test Circuits.. 12
Outline Dimensions ... 14
Ordering Guide ... 14

Pin Configuration and Function Descriptions................................ 7

REVISION HISTORY

10/04-Initial Version: Revision 0

SPECIFICATIONŚ—2.7 V TO 3.6 V

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match between Channels (Δ Ron) On Resistance Flatness ($\mathrm{R}_{\text {flat (on) }}$)	0.35 0.5 0.04 0.075 0.055 0.07	$\begin{aligned} & 0.56 \\ & 0.085 \\ & 0.082 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 0.61 \\ & 0.095 \\ & 0.09 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{D D}=2.7 \mathrm{~V} \\ & V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} ; \end{aligned}$ Figure 19 $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.9 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage Is (OFF) Channel On Leakage I_{D} Is (ON)	$\begin{aligned} & \pm 0.2 \\ & \pm 0.2 \end{aligned}$			nA typ nA typ	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0.6 \mathrm{~V} / 3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3.3 \mathrm{~V} / 0.6 \mathrm{~V} \text {; Figure } 20 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0.6 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \text {; Figure } 21 \\ & \hline \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current linl or linh CIN, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 3.2 \end{aligned}$		$\begin{aligned} & 2 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS² ton toff Break-Before-Make Time Delay (tввм) Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion (THD + N) Insertion Loss -3 dB Bandwidth C_{s} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	12 16 6.5 8.5 5 70 -57 -57 0.013 -0.01 25 74 120	18 9	19 9.5 1	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% dB typ MHz typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} / 0 \mathrm{~V} ; \text { Figure } 22 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} ; \text { Figure } 22 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \text { Figure } 23 \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=1.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ; \text { Figure } 25 \\ & \mathrm{~S} 1-\mathrm{S} 2 ; \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ; \text { Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}=3 \mathrm{~V} \mathrm{p} \mathrm{p} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{CL}=5 \mathrm{pF} ; \text { Figure } 27 \\ & \\ & \mathrm{~V}_{\mathrm{DD}}=3.6 \mathrm{~V} \end{aligned}$
POWER REQUIREMENTS ldD	0.003	1	4	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	Digital inputs $=0 \mathrm{~V}$ or 3.6 V

[^0]
ADG839

SPECIFICATIONS1—2.3 V TO 2.7 V

$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match between Channels (Δ Ron) On Resistance Flatness (Rflat (on))	$\begin{aligned} & 0.35 \\ & 0.5 \\ & 0.04 \\ & 0.075 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.085 \\ & 0.13 \end{aligned}$	0 V to VDD 0.6 0.095 0.13	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} ; \text { Figure } 19 \\ & \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.95 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage Is (OFF) Channel On Leakage I_{D}, I_{S} (ON)	$\begin{aligned} & \pm 0.2 \\ & \pm 0.2 \end{aligned}$			nA typ nA typ	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0.6 \mathrm{~V} / 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=2.4 \mathrm{~V} / 0.6 \mathrm{~V} \text {; Figure } 20 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0.6 \mathrm{~V} \text { or } 2.4 \mathrm{~V} \text {; Figure } 21 \\ & \hline \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VinL Input Current linl or linh CIN, Digital Input Capacitance	0.005 3.2		$\begin{aligned} & 1.7 \\ & 0.7 \\ & \\ & \pm 0.1 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS² ton toff Break-before-Make Time Delay (tввм) Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion (THD + N) Insertion Loss -3 dB Bandwidth C_{s} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 14.5 \\ & 18 \\ & 7.5 \\ & 9.2 \\ & 7 \\ & \\ & 60 \\ & -57 \\ & -57 \\ & \\ & 0.021 \\ & -0.01 \\ & 25 \\ & 78 \\ & 127 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 9.5 \end{aligned}$	21 9.8	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% dB typ MHz typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} / \mathrm{V} \text { V; Figure } 22 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} ; \text { Figure } 22 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \text { Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{S} 2}=1.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{S}}=1.25 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ; \text { Figure } 25 \\ & \mathrm{~S} 1-\mathrm{S} 2 ; \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ; \text { Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V} \mathrm{p-p} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 27 \\ & \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \end{aligned}$
POWER REQUIREMENTS ID	0.003	1	4	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	Digital inputs $=0 \mathrm{~V}$ or 2.7 V

[^1]
SPECIFICATIONS'—1.65 V TO 1.95 V

$\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V} \pm 1.95 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match between Channels (Δ Ron) On Resistance Flatness (Rflat (on)	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 1.3 \\ & 0.04 \\ & 0.075 \\ & 0.3 \end{aligned}$	$\begin{array}{r} 1.2 \\ 2.5 \\ 0.08 \end{array}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 1.2 \\ & 2.5 \\ & \\ & 0.08 \end{aligned}$	V Ω typ Ω max Ω max Ω typ Ω max Ω typ	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{I}}=100 \mathrm{~mA}$; Figure 19 $\begin{aligned} & V_{D D}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mathrm{TBD}, \mathrm{I}=100 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage Is (OFF) Channel On Leakage $I_{D}, I_{S}(O N)$	$\begin{aligned} & \pm 0.2 \\ & \pm 0.2 \end{aligned}$			nA typ nA typ	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=1.95 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0.6 \mathrm{~V} / 1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.65 \mathrm{~V} / 0.6 \mathrm{~V} ; \end{aligned}$ Figure 20 $V_{S}=V_{D}=0.6 \mathrm{~V} \text { or } 1.65 \mathrm{~V} \text {; Figure } 21$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current linlor linh Cin, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 3.2 \end{aligned}$		$\begin{aligned} & 0.65 \mathrm{VDD} \\ & 0.35 \mathrm{VDD} \\ & \\ & \pm 0.1 \end{aligned}$	\checkmark min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
```DYNAMIC CHARACTERISTICS \({ }^{2}\) ton toff Break-before-Make Time Delay ( \({ }_{\text {ввм }}\) ) Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion (THD + N) Insertion Loss -3 dB Bandwidth \(\mathrm{C}_{5}\) (OFF) \(\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})\)```	$\begin{aligned} & 20 \\ & 28 \\ & 8 \\ & 10.1 \\ & 12 \\ & \\ & 50 \\ & -57 \\ & -57 \\ & \\ & 0.033 \\ & \\ & -0.01 \\ & 25 \\ & 83 \\ & 132 \\ & \hline \end{aligned}$	30	31 10.7 1	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \%   dB typ   MHz typ   pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \Omega / 0 \mathrm{~V} ; \text { Figure } 22 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} ; \text { Figure } 22 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=1 \mathrm{~V} ; \text { Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {; Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ; \text { Figure } 25 \\ & \mathrm{~S} 1-\mathrm{S} 2 ; \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} \text {; Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{CL}=5 \mathrm{pF} ; \text { Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 27 \\ & \mathrm{~V}_{\mathrm{DD}}=1.95 \mathrm{~V} \\ & \mathrm{Digital} \text { inputs }=0 \mathrm{~V} \text { or } 1.95 \mathrm{~V} \end{aligned}$
POWER REQUIREMENTS IDD	0.003	$1$	4	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	Digital inputs $=0 \mathrm{~V}$ or 1.95 V

[^2]
## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 5.

Parameter	Rating
$V_{\text {DD }}$ to GND	-0.3 V to +4.6 V
Analog Inputs ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs	-0.3 V to 4.6 V or 10 mA , whichever occurs first
Peak Current, S or D	
3.3 V Operation	500 mA
2.5V Operation	460 mA
1.8V Operation	420 mA (pulsed at 1 ms , $10 \%$ duty cycle max)
Continuous Current, S or D	
3.3V Operation	300 mA
2.5 V Operation	275 mA
1.8V Operation	250 mA
Operating Temperature Range Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
SC70 Package	$332^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JA}}$ Thermal Impedance	$120^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 seconds)	$300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature	$220^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

[^3]
## ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 2. Pin Configuration

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN	Logic control input.
2	VDD	Most positive power supply potential.
3	GND	Ground (0 V) reference.
4,6	S1, S2	Source terminal. Can be an input or output.
5	D	Drain terminal. Can be an input or output.

For more information, refer to the Terminology section.

## ADG839

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 3. On Resistance vs. $V_{D}\left(V_{s}\right) V_{D D}=3 V$ to 3.6 V


Figure 4. On Resistance vs. $V_{D}\left(V_{S}\right) V_{D D}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$


Figure 5. On Resistance vs. $V_{D}\left(V_{S}\right) V_{D D}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$


Figure 6. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperature, $V_{D D}=3.3 \mathrm{~V}$


Figure 7. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperature, $V_{D D}=2.5 \mathrm{~V}$


Figure 8. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperature, $V_{D D}=1.8 \mathrm{~V}$


Figure 9. Leakage Current vs. Temperature, VDD $=3.3 \mathrm{~V}$


Figure 10. Leakage Current vs. Temperature, $V_{D D}=2.5 \mathrm{~V}$


Figure 11. Leakage Current vs. Temperature, $V_{D D}=1.8 \mathrm{~V}$


Figure 12. Charge Injection vs. Source Voltage


Figure 13. ton/toff Times vs. Temperature


Figure 14. Bandwidth

## ADG839



Figure 15. Off Isolation vs. Frequency


Figure 16. Crosstalk vs. Frequency


Figure 17. Total Harmonic Distortion + Noise


Figure 18. AC PSRR

## TERMINOLOGY

$I_{D D}$
Positive supply current.
$V_{D}\left(V_{s}\right)$
Analog voltage on Terminals D and S.

## Ron

Ohmic resistance between D and S .

## $\mathrm{R}_{\mathrm{flat}}(\mathrm{ON})$

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.

## $\Delta$ Ron

On resistance match between any two channels.

## Is (OFF)

Source leakage current with the switch off.

## ID (OFF)

Drain leakage current with the switch off.

## $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{ON})$

Channel leakage current with the switch on.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
Vinh
Minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
Input current of the digital input.
$\mathrm{C}_{\mathrm{s}}$ (OFF)
Off switch source capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}$ (OFF)
Off switch drain capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{ON})$
On switch capacitance. Measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.

## ton

Delay time between the $50 \%$ and the $90 \%$ points of the digital input and switch on condition.
toff
Delay time between the $50 \%$ and the $90 \%$ points of the digital input and switch off condition.
tbba $^{\text {b }}$
On or off time measured between the $80 \%$ points of both switches when switching from one to another.

## Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during on-off switching.

## Off Isolation

A measure of unwanted signal coupling through an off switch.

## Crosstalk

A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.

## -3 dB Bandwidth

The frequency at which the output is attenuated by 3 dB .

## On Response

The frequency response of the on switch.

## Insertion Loss

The attenuation between the input and output ports of the switch when the switch is in the on condition, and is due to the on resistance of the switch.

## THD + N

The ratio of the harmonic amplitudes plus noise of a signal to the fundamental.

## PSRR

Power Supply Rejection Ratio. This is a measure of the coupling of unwanted ac signals on the power supply to the switch output when the supply is not decoupled.

## ADG839

TEST CIRCUITS


Figure 19. On Resistance


Figure 20. Off Leakage


Figure 21. On Leakage


Figure 22. Switching Times, ton, $^{\text {, }}$ OFF


Figure 23. Break-before-Make Time Delay, $t_{B B M}$


Figure 24. Charge Injection


Figure 25. Off Isolation


Figure 27. Bandwidth


Figure 26. Channel-to-Channel Crosstalk


Figure 27. PSRR

## ADG839

## OUTLINE DIMENSIONS



Figure 28. 6-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-6)
Dimensions shown in millimeters

Model	Temperature Range	Package Description	Package Option	Branding ${ }^{1}$
ADG839YKSZ-500RL7 ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6-Lead Thin Shrink Small Outline Transistor Package	KS-6	SUA
ADG839YKSZ-REEL2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6-Lead Thin Shrink Small Outline Transistor Package	KS-6	SUA
ADG839YKSZ-REEL7²	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6-Lead Thin Shrink Small Outline Transistor Package	KS-6	SUA

[^4]NOTES

## ADG839

## NOTES


[^0]:    ${ }^{1}$ Temperature range for the Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design; not subject to production test.

[^1]:    ${ }^{1}$ Temperature range for the Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design; not subject to production test.

[^2]:    ${ }^{1}$ Temperature range for the Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design; not subject to production test.

[^3]:    ${ }^{1}$ Overvoltages at S or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

[^4]:    ${ }^{1}$ Branding on this package is limited to three characters due to space constraints.
    ${ }^{2} Z=P b$-free part.

