FEATURES

5.5Ω (maximum) on resistance
0.9Ω (maximum) on resistance flatness
2.7 V to 5.5 V single supply
$\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ dual supply
Rail-to-rail operation
10-lead MSOP package
Typical power consumption (<0.01 $\mu \mathrm{W}$)
TTL-/CMOS-compatible inputs

APPLICATIONS

Automatic test equipment
Power routing
Communication systems
Data acquisition systems
Sample-and-hold systems
Avionics
Relay replacements
Battery-powered systems

GENERAL DESCRIPTION

The ADG621/ADG622/ADG623 are monolithic, CMOS, single-pole, single-throw (SPST) switches. Each switch of the ADG621/ADG622/ADG623 conducts equally well in both directions when on.

The ADG621/ADG622/ADG623 contain two independent switches. The ADG621 and ADG622 differ only in that both switches are normally open and normally closed. In the ADG623, Switch 1 is normally open, and Switch 2 is normally closed. The ADG623 exhibits break-before-make switching action.

The ADG621/ADG622/ADG623 offer low on resistance of 4Ω, which is matched to within 0.25Ω between channels. These switches also provide low power dissipation yet give high switching speeds. The ADG621/ADG622/ADG623 are available in a 10 -lead MSOP package.

FUNCTIONAL BLOCK DIAGRAMS

Figure 2.

NOTES

1. SWITCHES SHOWN FOR A LOGIC 0 INPUT

Figure 3.

PRODUCT HIGHLIGHTS

1. Low on resistance, $\mathrm{R}_{\mathrm{ON}}(4 \Omega$ typical $)$.
2. Dual $\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ or single +2.7 V to +5.5 V .
3. Low power dissipation; CMOS construction ensures low power dissipation.
4. Tiny 10-lead MSOP package.
[^0][^1]
ADG622/ADG623

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagrams 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 3
Single Supply

\qquad 4
REVISION HISTORY

11/09—Rev. A to Rev. B
Changes to Table 5 5
Changes to Ordering Guide 12
6/07—Rev. 0 to Rev. AChange to On Resistance Flatness, $\mathrm{R}_{\text {FLat(ON) }}$Specification (Table 1) 3
Change to On Resistance Flatness, $\mathrm{R}_{\text {FLAT(ON) }}$
Specification (Table 2)Added Table 6 6
Changes to Terminology Section. 7
Changes to Figure 13.Updated Outline Dimensions12
Changes to Ordering Guide11/01-Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY ${ }^{1}$

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, $\mathrm{R}_{\text {on }}$ On Resistance Match Between Channels, $\Delta \mathrm{R}_{\mathrm{ON}}$ On Resistance Flatness, $\mathrm{R}_{\text {flation) }}$	$\begin{aligned} & 4 \\ & 5.5 \\ & 0.25 \\ & 0.35 \\ & 0.9 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 7 \\ & 7 \\ & 0.4 \\ & 0.9 \\ & 1.5 \\ & \hline \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}, \text { see Figure } 16 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, I_{5} (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $I_{D}, I_{S}(O n)$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	± 1 ± 1 ± 1	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}, \text { see Figure } 17 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {, see Figure } 17 \\ & \mathrm{~V}_{S}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \text {, see Figure } 18 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathbb{N H}}$ Input Low Voltage, $\mathrm{V}_{\mathbb{N L}}$ Input Current, $\mathrm{I}_{\mathbb{N L}}$ or $\mathrm{I}_{\mathbb{N H}}$ Digital Input Capacitance, $\mathrm{C}_{\mathbb{N}}$	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$	2.4 0.8 ± 0.1	V min $V_{\text {max }}$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{N L}}$ or $\mathrm{V}_{\mathbb{N} H}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $t_{\text {OFF }}$ Break-Before-Make Time Delay, $\mathrm{t}_{\text {ввм }}$ (ADG623 Only) Charge Injection Off Isolation Channel-to-Channel Crosstalk Bandwidth -3dB C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{D}} \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & 75 \\ & 120 \\ & 45 \\ & 70 \\ & 30 \\ & \\ & 110 \\ & -65 \\ & -90 \\ & 230 \\ & 20 \\ & 20 \\ & 70 \\ & \hline \end{aligned}$	155 85 10	$\begin{array}{\|l\|} \hline \text { ns typ } \\ \text { ns max } \\ \text { ns typ } \\ \text { ns max } \\ \text { ns typ } \\ \text { ns min } \\ \text { pC typ } \\ \text { dB typ } \\ \text { dB typ } \\ \text { MHz typ } \\ \text { pF typ } \\ \text { pF typ } \\ \text { pF typ } \\ \hline \end{array}$	$\begin{aligned} & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} ; \mathrm{V}_{S}=3.3 \mathrm{~V} \text {, see Figure } 19 \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} ; \mathrm{V}_{S}=3.3 \mathrm{~V} \text {, see Figure } 19 \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} ; \mathrm{V}_{\mathrm{S} 1}=V_{S 2}=3.3 \mathrm{~V} \\ & \text { See Figure } 20 \\ & V_{S}=0 \mathrm{~V}, R_{S}=0 \Omega, C_{L}=1 \mathrm{nF} \text {, see Figure } 21 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, f=1 \mathrm{MHz} \text {, see Figure } 22 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, f=1 \mathrm{MHz} \text {, see Figure } 23 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \text { see Figure } 24 \\ & f=1 \mathrm{MHz} \\ & f=1 \mathrm{MHz} \\ & f=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS $I_{D D}$ I_{ss}	0.001 0.001	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

[^2]
ADG622/ADG623

SINGLE SUPPLY ${ }^{1}$

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, $\mathrm{R}_{\text {on }}$ On Resistance Match Between Channels, $\Delta \mathrm{R}_{\mathrm{ON}}$ On Resistance Flatness, $\mathrm{R}_{\text {flation }}$	$\begin{aligned} & 7 \\ & 10 \\ & 0.5 \\ & 0.75 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0 \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 12.5 \\ & 1 \\ & 0.5 \\ & 1.2 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \text { see Figure } 16 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \text { to } 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage I ${ }_{5}$ (Off) Drain Off Leakage I_{D} (Off) Channel On Leakage, $I_{\mathrm{D},} \mathrm{I}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	± 1 ± 1 ± 1	nA typ nA max nA typ nA max nA typ nA max	$V_{D D}=5.5 \mathrm{~V}$ $V_{S}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}$, see Figure 17 $\mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}$, see Figure 17 $\mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$, see Figure 18
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathbb{N H}}$ Input Low Voltage, $\mathrm{V}_{\mathbb{I N}}$ Input Current, $\mathrm{I}_{\mathbb{N L}}$ or $\mathrm{I}_{\mathbb{N H}}$ Digital Input Capacitance, $\mathrm{C}_{1 \mathrm{~N}}$	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$	$\begin{gathered} 2.4 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$V_{\mathbb{N}}=V_{\mathbb{N L}} \text { or } V_{\mathbb{N H}}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{oN} $\mathrm{t}_{\text {OFF }}$ Break-Before-Make Time Delay, $\mathrm{t}_{\text {вв }}$ (ADG623 Only) Charge Injection Off Isolation Channel-to-Channel Crosstalk Bandwidth -3dB C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & 120 \\ & 210 \\ & 50 \\ & 75 \\ & 70 \\ & \hline 6 \\ & \hline-65 \\ & -90 \\ & 230 \\ & 20 \\ & 20 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 260 \\ & 100 \\ & 10 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & R_{L}=300 \Omega, C_{L}=35 p F ; V_{S}=3.3 \mathrm{~V} \text {, see Figure } 19 \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} ; \mathrm{V}_{S}=3.3 \mathrm{~V} \text {, see Figure } 19 \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{S} 1}=V_{S 2}=3.3 \mathrm{~V} \\ & \text { See Figure } 20 \\ & V_{S}=0 \mathrm{~V} ; R_{S}=0 \Omega, C_{L}=1 \mathrm{nF} \text {, see Figure } 21 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, f=1 \mathrm{MHz} \text {, see Figure } 22 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, f=1 \mathrm{MHz} \text {, see Figure } 23 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF} \text {, see Figure } 24 \\ & f=1 \mathrm{MHz} \\ & f=1 \mathrm{MHz} \\ & f=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS $I_{D D}$	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

[^3]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
V_{DD} to V_{SS}	13 V
$\mathrm{~V}_{\mathrm{DD}}$ to GND	-0.3 V to +6.5 V
$\mathrm{~V}_{\mathrm{SS}}$ to GND	+0.3 V to -6.5 V
Analog Inputs 1	$\mathrm{~V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs 1	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA,
	whichever occurs first
Peak Current, S or D	100 mA (pulsed at 1 ms,
	10% duty cycle maximum)
Continuous Current, S or D	50 mA
Operating Temperature Range	
\quad Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
MSOP Package	
$\quad \theta_{\mathrm{JA}}$ Thermal Impedance	$206^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC} Thermal Impedance	$44^{\circ} \mathrm{C} / \mathrm{W}$
Lead Soldering	
\quad Lead Temperature, Soldering	$300^{\circ} \mathrm{C}$
\quad (10 sec)	
IR Reflow, Peak Temperature	$220^{\circ} \mathrm{C}$
Pb-Free Soldering	
Reflow, Peak Temperature	$260(+0 /-5)^{\circ} \mathrm{C}$
Time at Peak Temperature	20 sec to 40 sec

[^4]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.

Table 4. ADG621/ADG622 Truth Table

ADG621 INx	ADG622 INx	Switch Sx Condition
0	1	Off
1	0	On

Table 5. ADG623 Truth Table

IN1	IN2	Switch S1	Switch S2
0	0	Off	On
0	1	Off	Off
1	0	On	On
1	1	On	Off

ESD CAUTION
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADG622/ADG623

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 4. 10-Lead MSOP (RM-10)

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1,7	S1, S2	Source Terminal. May be an input or an output.
2,8	D1, D2	Drain Terminal. May be an input or an output.
3,9	IN2, IN1	Control Input.
4	GND	Ground (0 V) Reference.
5	$\mathrm{~V}_{\mathrm{SS}}$	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, this should be tied to
	ground at the device.	
6	NC	No Connect.
10	$\mathrm{~V}_{\mathrm{DD}}$	Most Positive Power Supply Potential.

TERMINOLOGY

$I_{D D}$
Positive supply current.
$I_{\text {ss }}$
Negative supply current
$V_{D}\left(V_{s}\right)$
Analog voltage on Terminal D and Terminal S.
$\mathbf{R}_{\text {ON }}$
Ohmic resistance between Terminal D and Terminal S.
$\mathbf{R}_{\text {FLAT (ON) }}$
On resistance flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
$\Delta R_{\text {ON }}$
On resistance match between any two channels.
I_{s} (Off)
Source leakage current with the switch off.

I_{D} (Off)

Drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On})$
Channel leakage current with the switch on.
$\mathrm{V}_{\mathrm{INL}}$
Maximum input voltage for Logic 0 .
$\mathrm{V}_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathrm{I}_{\mathrm{INL}}\left(\mathrm{I}_{\mathrm{INH}}\right)$
Input current of the digital input.
C_{S} (Off)
Off switch source capacitance. Measured with reference to ground.
$C_{\text {D }}$ (Off)
Off switch drain capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)
On switch capacitance. Measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.
t_{ON}
Delay time between the 50% and the 90% points of the digital input and switch on condition.
$\mathbf{t}_{\text {OFF }}$
Delay time between the 50% and the 90% points of the digital input and switch off condition.
$\mathbf{t}_{\text {ввм }}$
On or off time measured between the 90% points of both switches when switching from one address state to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during on-off switching.

Off Isolation

A measure of an unwanted signal coupling through an off switch.

Crosstalk

A measure of an unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

-3 dB Bandwidth

The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The attenuation between the input and output ports of the switch when the switch is in the on condition and is due to the on resistance of the switch.

ADG622/ADG623

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance vs. V_{D}, V_{S} (Dual Supply)

Figure 6. On Resistance vs. V_{D}, V_{S} (Single Supply)

Figure 7. On Resistance vs. V_{D}, V_{S} for Different Temperatures (Dual Supply)

Figure 8. On Resistance vs. V_{D}, V_{S} for Different Temperature (Single Supply)

Figure 9. Leakage Current vs. Temperature (Dual Supply)

Figure 10. Leakage Current vs. Temperature (Single Supply)

Figure 11. Charge Injection vs. Source Voltage

Figure 12. $t_{\text {ON }} / t_{\text {OFF }}$ Times vs. Temperature

Figure 13. Off Isolation vs. Frequency

Figure 14. Crosstalk vs. Frequency

Figure 15. On Response vs. Frequency

ADG622/ADG623

TEST CIRCUITS

Figure 16. On Resistance

Figure 17. OffLeakage

Figure 18. On Leakage

Figure 19. Switching Times ($t_{\text {ON }}, t_{\text {OFF }}$)

Figure 20. Break-Before-Make Time Delay, $t_{B B M}$ (ADG623 Only)

Figure 21. Charge Injection

OFF ISOLATION $=20$ LOG $\frac{v_{\text {OUT }}}{v_{S}}$
Figure 22. Off Isolation

Figure 23. Channel-to-Channel Crosstalk

Figure 24. Bandwidth

ADG622/ADG623

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-BA
Figure 25. 10-Lead Mini Small Outline Package [MSOP] (RM-10)
Dimensions shown in millimeters

Model	Temperature Range	Package Description	Package Option	Branding
ADG621BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	SXB
ADG621BRM-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	SXB
ADG621BRMZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	SXB\#
ADG621BRMZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	SXB\#
ADG622BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	SYB
ADG622BRM-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	SYB
ADG622BRM-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	SYB
ADG622BRMZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	S12
ADG622BRMZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	S12
ADG622BRMZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	S12
ADG623BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	SZB
ADG623BRM-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	SZB
ADG623BRM-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	SZB
ADG623BRMZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	SZB\#
ADG623BRMZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	SZB\#
ADG623BRMZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	SZB\#

[^0]: Rev. B
 Information fumished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that mayresult from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registeredtrademarks are the property of their respective owners.

[^1]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
 Tel: 781.329.4700
 www.analog.com
 Fax: 781.461.3113 ©2001-2009 Analog Devices, Inc. All rights reserved.

[^2]: ${ }^{1}$ Temperature range is as follows: B version, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design; not subject to production test.

[^3]: ${ }^{1}$ Temperature range is as follows: B Version, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design; not subject to production test.

[^4]: ${ }^{1}$ Overvoltages at INx, S, or D must be clamped by internal diodes. Currents should be limited to the maximum ratings given.

