FEATURES

44 V Supply Maximum Rating
$\mathrm{V}_{\text {ss }}$ to V_{DD} Analog Signal Range
Single-/Dual-Supply Specifications
Wide Supply Ranges (10.8 V to 16.5 V)
Microprocessor Compatible (100 ns WR Pulse)
Extended Plastic Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
Low Leakage (20 pA typ)
Low Power Dissipation (28 mW max)
Available in 18-Lead DIP/SOIC and 20-Lead PLCC Packages
Superior Alternative to: DG528
DG529
ADG529A is obsolete

FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

1. Single-/dual-supply specifications with a wide tolerance. The devices are specified in the 10.8 V to 16.5 V range for both single- and dual-supplies.
2. Easily Interfaced

The ADG528A and ADG529A can be easily interfaced with microprocessors. The $\overline{\mathrm{WR}}$ signal latches the state of the address control lines and the enable line. The $\overline{\mathrm{RS}}$ signal clears both the address and enable data in the latches resulting in no output (all switches off). $\overline{\mathrm{RS}}$ can be tied to the microprocessor reset pin.
3. Extended Signal Range

The enhanced LC 2 MOS processing results in a high breakdown and an increased analog signal range of V_{SS} to V_{DD}.
4. Break-Before-Make Switching

Switches are guaranteed break-before-make so that input signals are protected against momentary shorting.
5. Low Leakage

Leakage currents in the range of 20 pA make these multiplexers suitable for high precision circuits.

ADG528A-SPECIFICATIONS

ADG528A

Parameter	$\begin{gathered} \text { ADG528A } \\ \text { ADG529A } \\ \text { K Version } \\ -40^{\circ} \mathrm{C} \text { to } \\ +25^{\circ} \mathrm{C}+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { ADG528A } \\ \text { ADG529A } \\ \text { B Version } \\ -40^{\circ} \mathrm{C} \text { to } \\ +25^{\circ} \mathrm{C}+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { ADG528A } \\ \text { ADG529A } \\ \text { T Version } \\ -55^{\circ} \mathrm{C} \text { to } \\ +25^{\circ} \mathrm{C}+125^{\circ} \mathrm{C} \end{gathered}$	Units	Comments
POWER SUPPLY I_{DD} I_{ss} Power Dissipation	0.6 20 1.5 10 0.2 2.8	0.6 20 1.5 10 0.2 2.8	$\begin{array}{ll} 0.6 & \\ 20 & 1.5 \\ 10 & 0.2 \\ & 2.8 \end{array}$	mA typ mA max $\mu \mathrm{A}$ typ mA max mW typ mW max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{INL}} \text { or } \mathrm{V}_{\mathrm{INH}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{INL}} \text { or } \mathrm{V}_{\mathrm{INH}} \end{aligned}$

NOTE
${ }^{1}$ Sample tested at $+25^{\circ} \mathrm{C}$ to ensure compliance.
Specifications subject to change without notice.

SINGLE SUPPLY ($\mathrm{V}_{\mathrm{DD}}=+10.8 \mathrm{~V}$ to $+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=\mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. $)$

Parameter	$\begin{gathered} \text { ADG528A } \\ \text { ADG529A } \\ \text { K Version } \\ -40^{\circ} \mathrm{C} \text { to } \\ +25^{\circ} \mathrm{C}+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { ADG528A } \\ \text { ADG529A } \\ \text { B Version } \\ -40^{\circ} \mathrm{C} \text { to } \\ +25^{\circ} \mathrm{C}+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { ADG528A } \\ \text { ADG529A } \\ \text { T Version } \\ -55^{\circ} \mathrm{C} \text { to } \\ +25^{\circ} \mathrm{C}+125^{\circ} \mathrm{C} \end{gathered}$	Units	Comments
DYNAMIC CHARACTERISTICS ${ }^{1}$ (Cont'd)					
t_{s} Address, Enable Setup Time	100	100	100	$n \mathrm{~min}$	
t_{H} Address,	100	100	100	ns min	See Figure 1
Enable Hold Time	10	10	10	$n s \min$	See Figure 1
$\mathrm{t}_{\text {RS }}$ Reset Pulse Width	100	100	100	$n \mathrm{mmin}$	See Figure 2
OFF Isolation	68	68	68	dB typ	$\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$,
	50	50	50	dB min	$\mathrm{V}_{\mathrm{S}}=3.5 \mathrm{~V} \mathrm{rms}, \mathrm{f}=100 \mathrm{kHz}$
C_{S} (OFF)	5	5	5	pF typ	$\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{OFF}) \mathrm{l}$					
ADG528A	22	22	22	pF typ	$\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$
ADG529A	11	11	11	pF typ	
POWER SUPPLY					
I_{DD}	0.6	0.6	0.6	mA typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
Power Dissipation	$\begin{array}{ll} & 1.5 \\ 11 & \end{array}$	$10 \quad 1.5$	$10 \quad 1.5$	mA max mW typ	
	$11 \quad 25$	1025	102	mW max	

NOTE

${ }^{1}$ Sample tested at $+25^{\circ} \mathrm{C}$ to ensure compliance.
Specifications subject to change without notice.

ADG528A

PIN CONFIGURATIONS

PLCC

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted)
V_{DD} to V_{SS}. 44 V
VDD to GND . 25 V
V ${ }_{\text {SS }}$ to GND . -25 V
Analog Inputs ${ }^{2}$
Voltage at S, D $\mathrm{V}_{\mathrm{SS}}-2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+2 \mathrm{~V}$ or 20 mA , whichever Occurs First
Continuous Current, S or D 20 mA
Pulsed Current, S or D
1 ms duration, 10% Duty Cycle 40 mA
Digital Inputs ${ }^{1}$
Voltage at $\mathrm{A}, \mathrm{EN}, \overline{\mathrm{WR}}, \overline{\mathrm{RS}} \ldots \ldots \mathrm{V}_{\mathrm{SS}}-4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+4 \mathrm{~V}$ or 20 mA , whichever Occurs First
Power Dissipation (Any Package)
Up to $+75^{\circ} \mathrm{C}$. 470 mW
Derates above $+75^{\circ} \mathrm{C}$. $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature
Commercial (K Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial (B Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (T Version) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$ NOTES
${ }^{1}$ Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ Overvoltage at $\mathrm{A}, \mathrm{EN}, \overline{\mathrm{WR}}, \overline{\mathrm{RS}}, \mathrm{S}$ or D will be clamped by diodes. Current should be limited to the maximum rating above.

TRUTH TABLES

A2	A1	A0	EN	$\overline{\mathrm{WR}}$	$\overline{\mathrm{RS}}$	ON SWITCH PAIR
X	X	X	X	F	1	Retains Previous Switch Condition
X	X	X	X	X	0	NONE (Address and Enable Latches Cleared)
X	X	X	0	0	1	NONE
0	0	0	1	0	1	1
0	0	1	1	0	1	2
0	1	0	1	0	1	3
0	1	1	1	0	1	4
1	0	0	1	0	1	5
1	0	1	1	0	1	6
1	1	0	1	0	1	7
1	1	1	1	0	1	8
X = Don't Care						ADG528A
A1	A0	EN	$\overline{\text { WR }}$	$\overline{\mathrm{RS}}$	ON SWITCH PAIR	
X	X	X	-	1	Retains Previous Switch Condition NONE (Address and Enable Latches Cleared)	
X	X	X	X	0		
X	X	0	0	1	NONE	
0	0	1	0	1	1	
0	1	1	0	1	2	
1	0	1	0	1	3	
1	1	1	0	1	4	
$\mathrm{X}=$ Don't Care $\quad A D G 529 A$						

TIMING DIAGRAMS

Figure 1.

Figure 2.
Figure 1 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while $\overline{\mathrm{WR}}$ is held low, the latches are transparent and the switches respond to the address and enable inputs. This input data is latched on the rising edge of $\overline{\mathrm{WR}}$.
Figure 2 shows the Reset Pulse Width, t_{RS}, and Reset Turn-off Time, $\mathrm{t}_{\mathrm{OFF}}(\overline{\mathrm{RS}})$.
Note: All digital input signals rise and fall times measured from 10% to 90% of $3 \mathrm{~V} . \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=20 \mathrm{~ns}$.

The multiplexers are guaranteed functional with reduced single or dual supplies down to 4.5 V .

TPC 1. $R_{\text {ON }}$ as a Function of $V_{D}\left(V_{S}\right)$: Dual Supply Voltage, $T_{A}=+25^{\circ} \mathrm{C}$

TPC 2. Leakage Current as a Function of Temperature (Note: Leakage Currents Reduce as the Supply Voltages Reduce)

TPC 3. $R_{\text {ON }}$ as a Function of $V_{D}\left(V_{S}\right)$: Single Supply Voltage, $T_{A}=+25^{\circ} \mathrm{C}$

TPC 4. Trigger Levels vs. Power Supply Voltage, Dual or Single Supply, $T_{A}=+25^{\circ} \mathrm{C}$

TPC 5. $t_{\text {TRANSItion }}$ vs. Supply Voltage: Dual and Single Supplies, $T_{A}=+25^{\circ} \mathrm{C}$
(Note: For $V_{D D}$ and $\left|V_{S S}\right|<10 V ; V 1=V_{D D} / V_{S S}, V 2=$ $V_{S S} / V_{D D}$. See Test Circuit 6)

TPC 6. I $I_{D D}$ vs. Supply Voltage: Dual or Single Supply, $T_{A}=+25^{\circ} \mathrm{C}$

Test Circuits

Test Circuit 1. RoN

Test Circuit 2. IS (OFF)

Test Circuit 4. $I_{D}(O N)$

$l_{\text {DIFF }}=l_{D A}(O F F)-I_{D B}$ (OFF)
Test Circuit 5. I IIFF

Test Circuit 6. Switching Time of Multiplexer, $t_{\text {TRANSItIon }}$

Test Circuit 3. I_{D} (OFF)

Test Circuit 8. Enable Delay, $t_{\text {ON }}$ (EN), $t_{\text {OFF }}$ (EN)

Test Circuit 9. Write Turn-On Time, $t_{O N}(\overline{W R})$

Test Circuit 10. Reset Turn-Off Time, $t_{\text {OFF }}(\overline{R S})$

Test Circuit 11. Charge Injection

TERMINOLOGY
$\begin{array}{ll}\mathrm{R}_{\mathrm{ON}} & \text { Ohmic resistance between terminals } \mathrm{D} \text { and } \mathrm{S} \\ \mathrm{R}_{\mathrm{ON}} \text { Match } & \text { Difference between the RON of any two channels }\end{array}$
$\mathrm{R}_{\text {ON }}$ Drift Change in RON versus temperature
I_{S} (OFF) Source terminal leakage current when the switch is off.
I_{D} (OFF) Drain terminal leakage current when the switch is off.
$\mathrm{I}_{\mathrm{D}}(\mathrm{ON}) \quad$ Leakage current that flows from the closed switch into the body.
$\begin{array}{ll}\mathrm{V}_{\mathrm{S}}\left(\mathrm{V}_{\mathrm{D}}\right) & \text { Analog voltage on terminal } \mathrm{S} \text { or } \mathrm{D} \\ \mathrm{C}_{\mathrm{S}}(\mathrm{OFF}) & \text { Channel input capacitance for "OFF" condition }\end{array}$
C_{D} (OFF) Channel output capacitance for "OFF" condition
$\mathrm{C}_{\text {IN }}$
$\mathrm{t}_{\mathrm{ON}}(\mathrm{EN}) \quad$ Delay time between the 50% and 90% points of the digital input and switch "ON" condition.
$\mathrm{t}_{\mathrm{OFF}}$ (EN)
$\mathrm{t}_{\text {transition }}$ the digital input and switch "OFF" condition Delay time between the 50% and 90% points of the digital inputs and switch "ON" condition when switching from one address state to another.
$t_{\text {OPEN }}$
V_{SS}
I_{DD}
I_{SS}
$V_{\text {INL }} \quad$ Maximum input voltage for Logic "0"
$\mathrm{V}_{\text {INH }} \quad$ Minimum input voltage for Logic " 1 "
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\mathrm{INH}}\right) \quad$ Input current of the digital input
$\mathrm{V}_{\mathrm{DD}} \quad$ Most positive voltage supply "OFF" time measured between 50% points of both switches when switching from one address state to another

Most negative voltage supply
Positive supply current
Negative supply current

OUTLINE DIMENSIONS

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 3. 18-Lead Ceramic Dual In-Line Package [CERDIP]
(Q-18)
Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG528AKN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 -Lead Plastic Dual In-Line Package [PDIP]	$\mathrm{N}-18$
ADG528AKNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 -Lead Plastic Dual In-Line Package [PDIP]	$\mathrm{N}-18$
ADG528AKP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 -Lead Plastic Leaded Chip Carrier [PLCC]	$\mathrm{P}-20$
ADG528AKP-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 -Lead Plastic Leaded Chip Carrier [PLCC]	P-20
ADG528AKPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 -Lead Plastic Leaded Chip Carrier [PLCC]	$\mathrm{P}-20$
ADG528AKPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 -Lead Plastic Leaded Chip Carrier [PLCC]	$\mathrm{P}-20$
ADG528ATQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 -Lead Ceramic Dual In-Line Package [CERDIP]	$\mathrm{Q}-18$
ADG528ABCHIPS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DIE	

${ }^{1} Z=$ RoHS Compliant Part.

REVISION HISTORY

8/2017—Rev. B to Rev. C
Added ADG529A Obsolete Note 1
Updated Outline Dimensions 11
Changes to Ordering Guide` 12
10/2004-Rev. A to Rev. B
Deleted 20-Lead LCC Package Universal
Changes to Features 5
Changes to Ordering Guide 6
SOIC added to DIP Pin Configuration 5

