High Voltage Latch-Up Proof,
4-/8-Channel Multiplexers

FEATURES

Latch-up proof

8 kV human body model (HBM) ESD rating
Low on resistance (13.5Ω)
$\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ dual-supply operation
9 V to 40 V single-supply operation
Fully specified at $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and $+\mathbf{3 6} \mathrm{V}$
$V_{s s}$ to $V_{D D}$ analog signal range

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications
(AQEC standard)
Military temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Controlled manufacturing baseline

One assembly/test site

One fabrication site
Enhanced product change notification
Qualification data available on request

APPLICATIONS

Relay replacement

Automatic test equipment
Data acquisition
Instrumentation
Avionics

Communication systems

GENERAL DESCRIPTION

The ADG5408-EP/ADG5409-EP are monolithic CMOS analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG5408-EP switches one of eight inputs to a common output, as determined by the 3-bit binary address lines, A0, A1, and A2. The ADG5409-EP switches one of four differential inputs to a common differential output, as determined by the 2-bit binary address lines, A0 and A1.

An EN input on both devices enables or disables the device. When EN is disabled, all channels switch off. The on-resistance profile is very flat over the full analog input range, which ensures good linearity and low distortion when switching audio signals. High switching speed also makes the parts suitable for video signal switching.
Each switch conducts equally well in both directions when on, and each switch has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked.

Rev. 0

[^0]
TABLE OF CONTENTS

Features 1
Enhanced Product Features 1
Applications. 1
Functional Block Diagrams. 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
± 20 V Dual Supply 4
12 V Single Supply 5
36 V Single Supply 6
Continuous Current per Channel, Sx or D 8
Absolute Maximum Ratings 9
ESD Caution 9
Pin Configurations and Function Descriptions 10
Typical Performance Characteristics. 12
Test Circuits 16
Outline Dimensions 18
Ordering Guide 18

SPECIFICATIONS

± 15 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

ADG5408-EP/ADG5409-EP

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
$\begin{gathered} \mathrm{CD}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{S}(\mathrm{On}) \\ \text { ADG5408-EP } \\ \text { ADG5409-EP } \end{gathered}$	$\begin{aligned} & 133 \\ & 81 \end{aligned}$			pF typ pF typ	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS ldo Iss $V_{D D} / V_{s S}$	$\begin{aligned} & 45 \\ & 55 \\ & 0.001 \end{aligned}$		80 1 $\pm 9 / \pm 22$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $V_{\text {min }} / V_{\text {max }}$	$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V}$ Digital inputs $=0 \mathrm{~V}$ or V_{DD} Digital inputs $=0 \mathrm{~V}$ or V_{DD} $\mathrm{GND}=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design; not subject to production test.

± 20 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-20 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Rflat (on)	$\begin{aligned} & 12.5 \\ & 14 \\ & 0.3 \\ & 0.8 \\ & 2.3 \\ & 2.7 \\ & \hline \end{aligned}$	17 1.3 3.1	$V_{D D}$ to $V_{S S}$ 21 1.4 3.5	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; see Figure } 24 \\ & \mathrm{~V}_{\mathrm{DD}}=+18 \mathrm{~V}, \mathrm{~V}_{S S}=-18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, IS (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, ID (On), Is (On)	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.15 \\ & \pm 0.4 \\ & \pm 0.15 \\ & \pm 0.4 \end{aligned}$	± 1 ± 4 ± 4	± 7 ± 30 ± 30	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+22 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-22 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V} \text {; see Figure } 27 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V} \text {; see Figure } 27 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 15 \mathrm{~V} \text {; see Figure } 23 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current, IINL or INH Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.002 \\ & 3 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ Transition Time, ttransition ton (EN) toff (EN) Break-Before-Make Time Delay, to Charge Injection, Qinj Off Isolation Channel-to-Channel Crosstalk	$\begin{aligned} & 160 \\ & 207 \\ & 140 \\ & 165 \\ & 133 \\ & 153 \\ & 38 \\ & 155 \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & 237 \\ & 194 \\ & 174 \end{aligned}$	262 218 189 8	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 30 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 32 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 32 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=10 \mathrm{~V}$; see Figure 31 $V_{S}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 33 $R \mathrm{~L}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 26 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 25

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
Total Harmonic Distortion + Noise	0.012			\% typ	$\begin{aligned} & \mathrm{RL}=1 \mathrm{k} \Omega, 20 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} ; \\ & \text { see Figure } 28 \end{aligned}$
-3 dB Bandwidth					$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$; see Figure 29
ADG5408-EP	50			MHz typ	
ADG5409-EP	88			MHz typ	
Insertion Loss	0.8			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { see Figure } 29 \end{aligned}$
C_{5} (Off)	17			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)					
ADG5408-EP	98			pF typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG5409-EP	48			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{d}}(\mathrm{On}), \mathrm{Cs}_{\text {(}} \mathrm{On}$)					
ADG5408-EP	128			pF typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG5409-EP	80			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{5 S}=-22 \mathrm{~V}$
Ido	50			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
	70		120	$\mu \mathrm{A}$ max	
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
			1	$\mu \mathrm{A}$ max	
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			$\pm 9 / \pm 22$	V min/V max	$\mathrm{GND}=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design; not subject to production test.

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V_{DD}	V	
On Resistance, Ron	26			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; see }$ Figure 24
	30	36	42	Ω max	$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
On-Resistance Match Between Channels, Δ Ron	0.3			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	1	1.5	1.6	Ω max	
On-Resistance Flatness, Rflat (on)	5.5			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	6.5	8	12	Ω max	
LEAKAGE CURRENTS Source Off Leakage, Is (Off)	± 0.02		± 7	nA typ	$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
					$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; see }$ Figure 27
	± 0.25	± 1		$n A \max$	
Drain Off Leakage, ID (Off)	± 0.05			nA typ	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; see }$ Figure 27
Channel On Leakage, Io (On), Is (On)	± 0.4	± 4	± 30	$n A \max$	
	± 0.05			nA typ	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 10 \mathrm{~V}$; see Figure 23
	± 0.4	± 4	± 30	nA max	
DIGITAL INPUTS	0.0023				$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
Input High Voltage, V INH			2.0	\checkmark min	
Input Low Voltage, $\mathrm{V}_{\text {INL }}$			0.8	V max	
Input Current, $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$			± 0.1	$\mu \mathrm{A}$ typ	
				$\mu \mathrm{A}$ max	
				pF typ	

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments	
DYNAMIC CHARACTERISTICS ${ }^{1}$						
Transition Time, ${ }_{\text {tranasition }}$	230			nstyp	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	
	321	388	430	ns max	$\mathrm{V}_{5}=8 \mathrm{~V}$; see Figure 30	
ton (EN)	215			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	
	276	345	397	ns max	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 32	
toff (EN)	134			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	
	161	187	209	ns max	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 32	
Break-Before-Make Time Delay, to	118			ns typ	$\mathrm{RL}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	
			44	ns min	$\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{52}=8 \mathrm{~V}$; see Figure 31	
Charge Injection, Qinj	45			pC typ	$V_{S}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 33	
Off Isolation	-60			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { see Figure } 26 \end{aligned}$	
Channel-to-Channel Crosstalk	-60			dB typ	$\begin{aligned} & \mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { see Figure } 25 \end{aligned}$	
Total Harmonic Distortion + Noise	0.1			\% typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, 6 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} ; \\ & \text { see Figure } 28 \end{aligned}$	
-3 dB Bandwidth					$\mathrm{RL}=50 \Omega, C_{L}=5 \mathrm{pF}$; see Figure 29	
ADG5408-EP	35			MHz typ		
ADG5409-EP	74			MHz typ		
Insertion Loss	-1.8			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { see Figure } 29 \end{aligned}$	
C_{s} (Off)	22			pF typ	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	
$C_{\text {D }}$ (Off)						
ADG5408-EP	119			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	
ADG5409-EP	59			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\text {S }}(\mathrm{On})$						
ADG5408-EP	146			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	
ADG5409-EP	86			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	
POWER REQUIREMENTS						$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$
IDD	40				$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
			75	$\mu \mathrm{A}$ max		
V ${ }_{\text {D }}$			9/40	\checkmark min $/ V_{\text {max }}$	$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{s s}=0 \mathrm{~V}$	

${ }^{1}$ Guaranteed by design; not subject to production test.

36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range On Resistance, Ron	14.5	19	0 V to V_{DD}	$\begin{aligned} & \text { V } \\ & \Omega \text { typ } \end{aligned}$	
					$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; see }$ Figure 24
	16		23	Ω max	$\mathrm{V}_{\mathrm{DD}}=32.4 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$
On-Resistance Match Between Channels, Δ Ron	0.3			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	0.8	1.3	1.4	Ω max	
On-Resistance Flatness, RFLat (on)	3.5			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	4.3	5.5	6.5	Ω max	

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.15 \\ & \\ & \pm 0.4 \\ & \pm 0.15 \\ & \pm 0.4 \end{aligned}$	± 1 ± 4 ± 4	± 7 ± 30 ± 30	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} / 1 \mathrm{~V} \text {; see } \end{aligned}$ Figure 27 $V_{s}=1 \mathrm{~V} / 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} / 1 \mathrm{~V} \text {; see }$ Figure 27 $V_{S}=V_{D}=1 \mathrm{~V} / 30 \mathrm{~V} \text {; see Figure } 23$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current, lind or linh Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.002 \\ & 3 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {GND }}$ or V_{DD}
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, ttransition	187	257	281		
ton (EN)	242			ns max	$\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}$; see Figure 30
	160			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	195	219	237	ns max	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$; see Figure 32
toff (EN)	147			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	184	184	190	ns max	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$; see Figure 32
Break-Before-Make Time Delay, $\mathrm{t}_{\text {b }}$	53			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			14	ns min pC typ	$\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=18 \mathrm{~V}$; see Figure 31
Charge Injection, Qin	150				$\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ;$ see Figure 33
Off Isolation	-60			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { see Figure } 26 \end{aligned}$
Channel-to-Channel Crosstalk	-60			dB typ	$\begin{aligned} & \mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; } \\ & \text { see Figure } 25 \end{aligned}$
Total Harmonic Distortion + Noise	0.4			\% typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, 18 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \text {; } \\ & \text { see Figure } 28 \end{aligned}$
-3 dB Bandwidth					$\mathrm{RL}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 29
ADG5408-EP	45			MHz typ	
ADG5409-EP	76			MHz typ	
Insertion Loss	-1			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { see Figure } 29 \end{aligned}$
C_{5} (Off)	18			pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$C_{\text {d }}$ (Off)					
ADG5408-EP	120			pF typ pF typ	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
ADG5409-EP	60				
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\text {S }}(\mathrm{On})$					$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG5408-EP	137			pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG5409-EP	80			pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS IdD $V_{D D}$	80100		155$9 / 40$	μA typ $\mu \mathrm{A}$ max V min/ $/$ max	$\begin{aligned} & \mathrm{V} \mathrm{DD}=39.6 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \end{aligned}$
					$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design; not subject to production test.

ADG5408-EP/ADG5409-EP

CONTINUOUS CURRENT PER CHANNEL, Sx OR D

Table 5. ADG5408-EP

Parameter	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{8 5}^{\circ} \mathbf{C}$	$\mathbf{1 2 5 ^ { \circ }} \mathbf{C}$	Unit
CONTINUOUS CURRENT, Sx OR D $\left(\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}\right)$				
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V}$	207	113	60	mA maximum
$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V}, \mathrm{~V}_{S S}=-20 \mathrm{~V}$	218	117	61	mA maximum
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	168	99	57	mA maximum
$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	214	116	61	mA maximum

Table 6. ADG5409-EP

Parameter	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{8 5}^{\circ} \mathbf{C}$	$\mathbf{1 2 5}^{\circ} \mathbf{C}$	Unit
CONTINUOUS CURRENT, Sx OR D $\left(\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}\right)$				
$V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}$	156	95	55	mA maximum
$V_{D D}=+20 \mathrm{~V}, \mathrm{~V}_{S S}=-20 \mathrm{~V}$	165	98	56	mA maximum
$V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	126	81	50	mA maximum
$V_{D D}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	161	97	56	mA maximum

ADG5408-EP/ADG5409-EP

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 7.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	48 V
VDD to GND	-0.3 V to +48 V
$V_{\text {ss }}$ to GND	+0.3 V to -48 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Peak Current, Sx or D Pins ADG5408-EP	435 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
ADG5409-EP	300 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
Continuous Current, Sx or D ${ }^{2}$	Data + 15\%
Temperature Range	
Operating	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance, θ_{JA}	
16-Lead LFCSP (4-Layer Board)	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb-Free	As per JEDEC J-STD-020

[^1]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.
Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 8. ADG5408-EP Pin Function Descriptions

Pin No.	Mnemonic	Description
15	A0	Logic Control Input.
16	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
1	Vss	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
2	S1	Source Terminal 1. This pin can be an input or an output.
3	S2	Source Terminal 2. This pin can be an input or an output.
4	S3	Source Terminal 3. This pin can be an input or an output.
5	S4	Source Terminal 4. This pin can be an input or an output.
6	D	Drain Terminal. This pin can be an input or an output.
7	S8	Source Terminal 8. This pin can be an input or an output.
8	S7	Source Terminal 7. This pin can be an input or an output.
9	S6	Source Terminal 6. This pin can be an input or an output.
10	S5	Source Terminal 5. This pin can be an input or an output.
11	VDD	Most Positive Power Supply Potential.
12	GND	Ground (0 V) Reference.
13	A2	Logic Control Input.
14	A1	Logic Control Input.
EP	Exposed Pad	The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal
	capability, it is recommended that the pad be soldered to the substrate, VSs.	

Table 9. ADG5408-EP Truth Table

A2	A1	A0	EN	On Switch
X	X	X	0	None
0	0	0	1	1
0	0	1	1	3
0	1	0	1	4
0	1	0	1	5
1	0	1	6	7
1	0	0	1	8
1	1	1	1	
1	1	1		

Table 10. ADG5409-EP Pin Function Descriptions

Pin No.	Mnemonic	Description
15	AO	Logic Control Input. Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
16	EN	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
1	VSS	Source Terminal 1A. This pin can be an input or an output.
2	S2A	Source Terminal 2A. This pin can be an input or an output.
3	S3A	Source Terminal 3A. This pin can be an input or an output.
4	S4A	Source Terminal 4A. This pin can be an input or an output.
5	DA	Drain Terminal A. This pin can be an input or an output.
6	SB	Drain Terminal B. This pin can be an input or an output.
7	Source Terminal 4B. This pin can be an input or an output.	
8	S3B	Source Terminal 3B. This pin can be an input or an output.
9	Source Terminal 2B. This pin can be an input or an output.	
10	Source Terminal 1B. This pin can be an input or an output.	
11	Vost Positive Power Supply Potential.	
12	GND	Ground (0 V) Reference.
13	Logic Control Input.	
14	A1	The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal
EP	Capability, it is recommended that the pad be soldered to the substrate, VSs.	

Table 11. ADG5409-EP Truth Table

A1	A0	EN	On Switch Pair
X	X	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. RoN as a Function of V_{S}, V_{D} (Dual Supply)

Figure 5. Ron as a Function of V_{S}, V_{D} (Dual Supply)

Figure 6. Ron as a Function of $V_{S,}, V_{D}$ (Single Supply)

Figure 7. Ron as a Function of V_{S}, V_{D} (Single Supply)

Figure 8. Ron as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, ± 15 V Dual Supply

Figure 9. Ron as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, ± 20 V Dual Supply

Figure 10. Ron as a Function of $V_{s}\left(V_{D}\right)$ for Different Temperatures, 12 V Single Supply

Figure 11. Ron as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, 36 V Single Supply

Figure 12. Leakage Currents vs. Temperature, ± 15 V Dual Supply

Figure 13. Leakage Currents vs. Temperature, ± 20 V Dual Supply

Figure 14. Leakage Currents vs. Temperature, 12 V Single Supply

Figure 15. Leakage Currents vs. Temperature, 36 V Single Supply

Figure 16. Off Isolation vs. Frequency, ± 15 V Dual Supply

Figure 17. Crosstalk vs. Frequency, ± 15 V Dual Supply

Figure 18. Charge Injection vs. Source Voltage

Figure 19. ACPSRR vs. Frequency, ± 15 V Dual Supply

Figure 20. $T H D+N$ vs. Frequency

Figure 21. Bandwidth

Figure 22. trransition Times vs. Temperature

TEST CIRCUITS

Figure 23. On Leakage

Figure 27. Off Leakage

Figure 28. THD + Noise Figure

Figure 29. Bandwidth

Figure 25. Channel-to-Channel Crosstalk
CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathbf{v}_{\text {OUT }}}{\mathbf{V}_{\text {S }}}$

Figure 26. Off Isolation

Figure 30. Address to Output Switching Times, $t_{\text {transition }}$

Figure 31. Break-Before-Make Delay, t_{D}

Figure 32. Enable Delay, ton (EN), toff (EN)

ADG5408-EP/ADG5409-EP

OUTLINE DIMENSIONS

08-16-2010-c
COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.
Figure 34. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
4 mm $\times 4$ mm Body, Very Very Thin Quad (CP-16-17)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG5408TCPZ-EP-RL7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-17
ADG5408TCPZ-EP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-17
ADG5409TCPZ-EP-RL7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-17
ADG5409TCPZ-EP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-17

${ }^{1} Z=$ RoHS Compliant Part.

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 O2015 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

[^1]: ${ }^{1}$ Overvoltages at the $\mathrm{Ax}, \mathrm{EN}, \mathrm{Sx}$, and D pins are clamped by internal diodes. Limit current to the maximum ratings given.
 ${ }^{2}$ See Table 5.

