Data Sheet

FEATURES

Latch-up immune under all circumstances Human body model (HBM) ESD rating: $\mathbf{8 k V}$
Low on resistance: 13.5Ω
$\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ dual-supply operation
9 V to 40 V single-supply operation
48 V supply maximum ratings
Fully specified at $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and $+\mathbf{3 6} \mathrm{V}$
V_{DD} to V_{ss} analog signal range

APPLICATIONS

High voltage signal routing
 Automatic test equipment
 Analog front-end circuits
 Precision data acquisition
 Industrial instrumentation
 Amplifier gain select
 Relay replacement

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. 8-Lead LFCSP

SWITCHES SHOWN FOR A LOGIC 0 INPUT.
Figure 2. 8-Lead MSOP

GENERAL DESCRIPTION

The ADG5419 is a monolithic industrial, complementary metal oxide semiconductor (CMOS) analog switch containing a latchup immune single-pole/double-throw (SPDT) switch.
Each switch conducts equally well in both directions when on, and each switch has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked. The ADG5419 exhibits break-before-make switching action for use in multiplexer applications.

The ultralow on resistance and on-resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications where low distortion is critical. The latch-up immune construction and high ESD rating make these switches more robust in harsh environments.

PRODUCT HIGHLIGHTS

1. Trench isolation guards against latch-up. A dielectric trench separates the P channel and N channel transistors, thereby preventing latch-up even under severe overvoltage conditions.
2. Low Ron of 13.5Ω.
3. Dual-supply operation. For applications where the analog signal is bipolar, the ADG5419 can be operated from dual supplies up to $\pm 22 \mathrm{~V}$.
4. Single-supply operation. For applications where the analog signal is unipolar, the ADG5419 can be operated from a single-rail power supply up to 40 V .
5. 3 V logic compatible digital inputs: $\mathrm{V}_{\text {INH }}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$.
6. No V_{L} logic power supply required.
7. Available in 8 -lead MSOP and 8 -lead, $2 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP packages.

Rev. A

TABLE OF CONTENTS

Features .1
Applications. 1
Functional Block DiagramS 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
± 20 V Dual Supply 4
12 V Single Supply 5
36 V Single Supply 6
REVISION HISTORY
3/15—Rev. 0 to Rev. A
Added 8-Lead LFCSP Universal 1
Added Figure 1; Renumbered Sequentially
Added Figure 1; Renumbered Sequentially
Changes to Table 1 3
Changes to Table 2 4
Changes to Table 3 5
Changes to Table 4 6
Changed Continuous Current, Sx or D to 8-Lead MSOP,
Table 5 7
Added Figure 3 and Table 8; Renumbered Sequentially 9
Changes to Table 7 9
Changes to Figure 5 10
Continuous Current per Channel, Sx or D 7
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configurations and Function Descriptions 9
Typical Performance Characteristics. 10
Test Circuits 14
Terminology 17
Applications Information 18
Trench Isolation 18
Outline Dimensions 19
Ordering Guide 19
Added Figure 23 13
Changes to Figure 24 Caption 14
Added Figure 25 and Figure 26 14
Deleted Figure 27; Renumbered Sequentially 14
Added Figure 32 and Figure 33 15
Changes to Terminology Section 17
Added Figure 37, Outline Dimensions 19
Changes to Ordering Guide 19
9/13-Revision 0: Initial Version

ADG5419

SPECIFICATIONS

± 15 V DUAL SUPPLY
$V_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{Ss}}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

[^0]
± 20 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-20 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Rflat (ON)	$\begin{aligned} & 12.5 \\ & 14 \\ & 0.1 \\ & 0.8 \\ & 2.3 \\ & 2.7 \end{aligned}$	18 1.3 3.3	$V_{D D}$ to $V_{S S}$ 22 1.4 3.7	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; see Figure } 27 \\ & \mathrm{~V}_{\mathrm{DD}}=+18 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$ $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
LEAKAGE CURRENTS Source Off Leakage, I (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, ID (On), Is (On)	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \\ & \pm 0.1 \\ & \\ & \pm 0.4 \end{aligned}$	± 1 ± 4 ± 4	± 10 ± 10 ± 10	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{S S}=-22 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V} \text {; see Figure } 24 \text { and } \end{aligned}$ Figure 25 $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V} \text {; see Figure } 25$ $\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{D}}= \pm 15 \mathrm{~V}$; see Figure 24 and Figure 26
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, line or linh Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\begin{aligned} & 0.002 \\ & 6 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 0.1 \end{aligned}$	$V_{\text {min }}$ V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or V_{DD}
DYNAMIC CHARACTERISTICS ${ }^{1}$ Transition Time, ttransition ton (EN) toff (EN) Break-Before-Make Time Delay, t_{D} Charge Injection, Qins Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth Insertion Loss C_{s} (Off) C_{D} (Off) $C_{D}(O n), C_{S}(O n)$	200 235 199 239 157 185 77 160 -60 -80 0.01 190 -0.7 11 22 55	$\begin{aligned} & 279 \\ & 300 \\ & 208 \end{aligned}$	294 344 227 46	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ MHz typ dB typ pF typ pF typ pF typ	
POWER REQUIREMENTS IdD Iss $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	$\begin{aligned} & 50 \\ & 70 \\ & 0.001 \end{aligned}$		110 1 $\pm 9 / \pm 22$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V min/V max	$\mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-22 \mathrm{~V}$ Digital inputs $=0 \mathrm{~V}$ or V_{DD} Digital inputs $=0 \mathrm{~V}$ or V_{DD} $\mathrm{GND}=0 \mathrm{~V}$

[^1]ADG5419

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

[^2]
ADG5419

36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Rflat (ON)	$\begin{aligned} & 14.5 \\ & 16 \\ & 0.1 \\ & 0.8 \\ & 3.5 \\ & 4.3 \end{aligned}$	20 1.3 5.5	0 V to V_{DD} 24 1.4 6.5	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; see }$ Figure 27 $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=32.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$ $\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
LEAKAGE CURRENTS Source Off Leakage, I_{s} (Off) Drain Off Leakage, ID (Off) Channel On Leakage, $I_{D}(O n), I_{s}(O n)$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \\ & \pm 0.1 \\ & \\ & \pm 0.4 \\ & \hline \end{aligned}$	± 1 ± 4 ± 4	± 10 ± 10 ± 10	nA typ nA max nA typ nA max nA typ $n A \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} \text { to } 1 \mathrm{~V} \text {; see Figure } 24 \\ & \text { and Figure } 25 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} \text { to } 1 \mathrm{~V} \text {; see Figure } 25 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { to } 30 \mathrm{~V} \text {; } \\ & \text { see Figure } 24 \text { and Figure } 26 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{l}_{\mathrm{INH}}$ Digital Input Capacitance, C_{IN}	0.002 6		$\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 0.1 \end{aligned}$	$V_{\text {min }}$ V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or V_{DD}
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, ttransition ton (EN) toff (EN)	$\begin{aligned} & 216 \\ & 250 \\ & 199 \\ & 232 \\ & 160 \\ & 193 \end{aligned}$	$\begin{aligned} & 286 \\ & 279 \\ & 284 \end{aligned}$	$\begin{aligned} & 310 \\ & 315 \\ & 315 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns max	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} ; \text { see Figure } 32 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} ; \text { see Figure } 33 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} \text {; see Figure } 33 \end{aligned}$
Break-Before-Make Time Delay, t_{D} Charge Injection, Qins	80 135		47	ns typ ns min pC typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} \text {; see Figure } 34 \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {; see } \end{aligned}$ $\text { Figure } 35$
Off Isolation	-60			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see }$ Figure 29
Channel-to-Channel Crosstalk	-80			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see }$ Figure 28
Total Harmonic Distortion + Noise	0.01			\% typ	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, 18 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \text {; see }$ Figure 30
-3 dB Bandwidth	170			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 31
Insertion Loss	-1			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ see Figure 31
C_{s} (Off)	14			pF typ	$\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)	26			pF typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\text {S }}(\mathrm{On})$	50			pF typ	$\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS IDD VDD	$\begin{aligned} & 80 \\ & 100 \end{aligned}$		$\begin{aligned} & 130 \\ & 9 / 40 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V min/V max	$\begin{aligned} & \mathrm{V} \mathrm{DD}=39.6 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \\ & \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \end{aligned}$

[^3]
Data Sheet
 ADG5419

CONTINUOUS CURRENT PER CHANNEL, SX OR D
Table 5.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
8-LEAD MSOP					$\theta_{\mathrm{JA}}=133.1^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$	113	73	46	mA maximum	
$\mathrm{V}_{\text {DD }}=20 \mathrm{~V}, \mathrm{~V}_{S S}=-20 \mathrm{~V}$	118	76	47	mA maximum	
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$	90	60	41	mA maximum	
$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	116	74	46	mA maximum	
8-LEAD LFCSP					$\theta_{\mathrm{JA}}=60.88^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$	156	92	52	mA maximum	
$V_{\text {DD }}=20 \mathrm{~V}, \mathrm{~V}_{S S}=-20 \mathrm{~V}$	163	95	53	mA maximum	
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	126	78	48	mA maximum	
$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$	160	93	53	mA maximum	

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 6.

Parameter	Rating
V_{DD} to $\mathrm{V}_{\text {SS }}$	48 V
VDD to GND	-0.3 V to +48 V
$V_{\text {ss }}$ to GND	+0.3 V to -48 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or } 30$ mA, whichever occurs first
Digital Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, Sx or D Pins	410 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
Continuous Current, Sx or D ${ }^{2}$	Data + 15\%
Temperature Range	
Operating	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance, θ_{JA}	
8-Lead MSOP (4-Layer Board)	$133.1^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead LFCSP	$60.88^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb Free	As per JEDEC J-STD-020
Human Body Model (HBM) ESD	8 kV

[^4]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

notes

1. $\mathrm{NC}=\mathrm{NO}$ CONNECT. NOT INTERNALLY CONNECTED. $\stackrel{\stackrel{\rightharpoonup}{-}}{ }$

Figure 4. 8-Lead MSOP Pin Configuration

Table 7. Pin Function Descriptions

Pin No.		Mnemonic	Description
LFCSP	MSOP		
1	1	D	Drain Terminal. This pin can be an input or output.
2	2	SA	Source Terminal. This pin can be an input or an output.
3	3	GND	Ground (0V) Reference.
4	4	$V_{\text {DD }}$	Most Positive Power Supply Potential.
5		EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the IN logic input determines the state of the switch.
6	6	IN	Logic Control Input.
7	7	Vss	Most Negative Power Supply Potential.
8	8	SB	Source Terminal. This pin can be an input or an output.
	5	NC	No Connect. Not internally connected.
	Not applicable	EPAD	Exposed Pad. Exposed pad tied to substrate, $\mathrm{V}_{\text {ss }}$.

Table 8. LFCSP Truth Table

EN	IN	Switch A	Switch B
0	X^{1}	Off	Off
1	0	On	Off
1	1	Off	On

${ }^{1} \mathrm{X}=$ don't care.
Table 9. MSOP Truth Table

IN	Switch A	Switch B
0	On	Off
1	Off	On

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance as a Function of V_{S}, V_{D} Dual Supply

Figure 6. On Resistance as a Function of V_{S}, V_{D} Dual Supply)

Figure 7. On Resistance as a Function of V_{S}, V_{D} (Single Supply)

Figure 8. On Resistance as a Function of V_{S}, V_{D} (Single Supply)

Figure 9. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, ± 15 V Dual Supply

Figure 10. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, ± 20 V Dual Supply

Figure 11. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, 12 V Single Supply

Figure 12. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, 36 V Single Supply

Figure 13. Leakage Currents as a Function of Temperature, ± 15 V Dual Supply

Figure 14. Leakage Currents as a Function of Temperature, ± 20 V Dual Supply

Figure 15. Leakage Currents as a Function of Temperature, 12 V Single Supply

Figure 16. Leakage Currents as a Function of Temperature, 36 V Single Supply

Figure 17. Off Isolation vs. Frequency

Figure 18. Crosstalk vs. Frequency

Figure 19. Charge Injection vs. Source Voltage

Figure 20. $T H D+N$ vs. Frequency

Figure 21. Bandwidth

Figure 22. $t_{\text {TAANSITION }}$ Times vs. Temperature

Figure 23. ACPSRR vs. Frequency

ADG5419

TEST CIRCUITS

Figure 24. Channel On and Source Off Leakage (MSOP Only)

Figure 25. Off Leakage (LFCSP Only)

Figure 27. On Resistance

Figure 28. Channel-to-Channel Crosstalk

Figure 29. Off Isolation

Figure 30. THD + Noise

Figure 31. Bandwidth

*ALTERNATIVELY, SB CAN BE CONNECTED TO $\mathbf{V}_{\mathbf{S}}$ WITH SA CONNECTED TO GROUND.
Figure 32. Transition Time, ttransition

Figure 33. Enable Delay, toN (EN), toff (EN) (LFCSP Only)

Figure 34. Break-Before-Make Delay, t_{D}

Figure 35. Charge Injection

TERMINOLOGY

$I_{\text {DD }}$

IDD represents the positive supply current.
Iss
Iss represents the negative supply current.

V_{D}, V_{s}

V_{D} and V_{S} represent the analog voltage on Terminal D and
Terminal S, respectively.

Ron

Ros is the ohmic resistance between Terminal D and Terminal S.
$\Delta \mathrm{R}_{\text {on }}$
Δ Ron $_{\text {on }}$ represents the difference between the Ron of any two channels.
$\mathrm{R}_{\text {flat (on) }}$
The difference between the maximum and minimum value of on resistance as measured over the specified analog signal range is represented by $\mathrm{R}_{\mathrm{flat}}$ (on).
I_{s} (Off)
I_{s} (Off) is the source leakage current with the switch off.
I_{D} (Off)
I_{D} (Off) is the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}(\mathbf{O n}), \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{I}_{\mathrm{S}}(\mathrm{On})$ represent the channel leakage currents with the switch on.
$V_{\text {INL }}$
$V_{\text {INL }}$ is the maximum input voltage for Logic 0 .
Vinh
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.
Int, $\mathbf{I}_{\text {INH }}$
$\mathrm{I}_{\text {INL }}$ and $\mathrm{I}_{\text {INH }}$ represent the low and high input currents of the digital inputs.
C_{D} (Off)
C_{D} (Off) represents the off switch drain capacitance, which is measured with reference to ground.
C_{s} (Off)
C_{s} (Off) represents the off switch source capacitance, which is measured with reference to ground.
C_{D} (On), Cs (On)
$\mathrm{C}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{C}_{s}(\mathrm{On})$ represent on switch capacitances, which are measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
C_{IN} represents digital input capacitance.
$t_{\text {on }}$ (EN)
ton represents the delay time between the 50% and 90% points of the digital input and switch on condition. See Figure 33.
$t_{\text {off }}$ (EN)
toff represents the delay time between the 50% and 90% points of the digital input and switch off condition. See Figure 33.

$\mathbf{t}_{\text {transition }}$

$\mathrm{t}_{\text {transition }}$ represents the delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.
$t_{\text {D }}$
t_{D} represents the off time measured between the 80% point of both switches when switching from one address state to another.

Off Isolation
Off isolation is a measure of unwanted signal coupling through an off channel.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB , from its dc level.

Total Harmonic Distortion + Noise (THD + N)
THD +N is the ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR measures the ability of a device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of $0.62 \mathrm{~V} \mathrm{p-p}$. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR. See Figure 23.

APPLICATIONS INFORMATION

The ADG54xx family of switches and multiplexers provide a robust solution for instrumentation, industrial, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off. The ADG5419 high voltage switch allows single-supply operation from 9 V to 40 V and dual-supply operation from $\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$. The ADG5419 (as well as other select devices within this family) achieves an 8 kV human body model ESD rating, which provides a robust solution, eliminating the need for separate protection circuitry designs in some applications.

TRENCH ISOLATION

In the ADG5419, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction-isolated switches, are eliminated, and the result is a completely latch-up immune switch.
In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. The two transistors form a silicon-controlled rectifier (SCR) type circuit, causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up immune switch.

Figure 36. Trench Isolation

OUTLINE DIMENSIONS

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADG5419BCPZ-RL7 2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Lead Frame Chip Scale Package [LFCSP_WD]	$\mathrm{CP}-8-4$	BL
ADG5419BRMZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	$\mathrm{RM}-8$	S48
ADG5419BRMZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8	S48

${ }^{1} Z=$ RoHS Compliant Part.

[^0]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^2]: ${ }^{1}$ Guaranteed by design; not subject to production test

[^3]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^4]: ${ }^{1}$ Overvoltages at the IN, Sx, and D pins are clamped by internal diodes. Limit current to the maximum ratings given.
 ${ }^{2}$ See Table 5.

