LTC3130EUDC-1 25V, 600mA Buck-Boost DC/DC Converter with $1.6 \mu \mathrm{~A}$ Quiescent Current

DESCRIPTIOn

Demonstration circuit 2397A features the LTC®3130-1, a wide input voltage, wide output voltage operating range, high efficiency, low noise monolithic DC/DC buck-boost converter.

The LTC3130-1 has 4-pin selectable output voltages and operates from input voltages of 2.4 V to 25 V . The LTC3130-1 incorporates a proprietary low noise switching algorithm which optimizes efficiency with input voltages above, below, or equal to the output voltage and ensures seamless transitions between operating modes.
The LTC3130-1's user selectable output voltages are 1.8V, $3.3 \mathrm{~V}, 5.0 \mathrm{~V}$ and 12 V . To set the desired output voltage on the DC2397A, use the "Vout JUMPER CONFIGURATION" table on the front of the board to determine the jumper settings for JP2 and JP3.
The DC2397A demo board has two user selectable operating modes: Burst Mode ${ }^{\circledR}$ operation and fixed frequency PWM (JP1). In PWM Mode, the LTC3130-1 operates at 1.2 MHz to allow high efficiency while minimizing the solution footprint.

Internal compensation reduces footprint size by reducing the number of external components. This also simplifies the design process and reduces external component cost.
An accurate RUN threshold can be set to enable the converter at a desired input voltage. The DC2397A demo board is set up to use R2 in conjunction with R3 to set this threshold. See the data sheet for details.

Maximum power point control (MPPC) allows for simple optimization of power transfer between the converter and a non-ideal supply such as a photovoltaic panel or another high impedance source. The DC2397A demo board can be set to operate in MPPC mode by setting jumper JP4 to "ON", removing R4 and populating R5 and R6. In most applications this function can be realized, often with better efficiency, by using the accurate RUN comparator functionality. See the data sheet for details.

A PGOOD open-drain output is provided and is pulled up to $\mathrm{V}_{\text {OUT }}$. This output asserts low when $\mathrm{V}_{\text {OUT }}$ is below regulation.
The LTC3130-1 allows the internal $V_{\text {CC }}$ rail to be fed externally from the EXTV ${ }_{\text {CC }}$ pin. In some applications the efficiency of the converter can be improved by allowing $V_{\text {CC }}$ to be back-fed from a supply, such as $V_{\text {OUT }}$. Setting the EXTV ${ }_{\text {cC }}$ jumper (JP6) on the demo board to "EXT" back-feeds $V_{\text {CC }}$ through EXTV ${ }_{\text {CC }}$ from $V_{\text {OUT. }}$ Setting this jumper to internal ("INT") powers $V_{C C}$ off the $V_{\text {IN }}$ input. See the data sheet for additional details.
The LTC3130/LTC3130-1 data sheet has detailed information about the operation, specifications, and applications of the device. The data sheet should be read in conjunction with this quick start guide.

Design files for this circuit board are available.

All registered trademarks and trademarks are the property of their respective owners.

PGRFORMANCE SUMMARY

Input Voltage Range	2.4 V to 25V
$V_{\text {OUT }}$	$1.8 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$
I OUT (see Note 1)	600 mA
Efficiency	See Figure 1

[^0]
DEMO MANUAL DC2397A

PUICK START PROCEDURE

Using short twisted pair leads for any power connections and with all loads and power supplies off, refer to Figure 4 for the proper measurement and equipment setup. The power supply (PS1) should not be connected to the circuit until told to do so in the procedure below.
When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the $\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUT }}$ and GND terminals (see Figure 5), or by using an oscilloscope probe tip jack.

1. Jumper and PS1 settings to start:

PS1:
JP1: MODE
JP2: VS1
JP3: VS2
JP4: MPPC
JP5: RUN
JP6: EXTV ${ }_{\text {CC }}$
2. With power OFF connect the power supply (PS1) as shown in Figure 4 . If accurate current measurements are desired (for efficiency calculation for example) then connect ammeters in series with supplies as shown. The ammeters are not required however.

Figure 1. DC2397A Typical Efficiency vs Load. $\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$.
3. Connect a 50 mA load (240Ω) to $\mathrm{V}_{\text {OUT }}$ as shown in Figure 4.
4. Turn on PS1 and slowly increase the voltage until the voltage at $\mathrm{V}_{\text {IN }}$ is 3 V .
5. Verify $\mathrm{V}_{\text {OUT }}$ is $\sim 12 \mathrm{~V}$.
6. $\quad \mathrm{V}_{\text {IN }}$ can now be varied between 2.4 V and 25 V . The load may need to be reduced for $\mathrm{V}_{\text {IN }}<3 \mathrm{~V}$ for $\mathrm{V}_{\text {OUT }}$ to remain in regulation.
7. The load can be varied. The maximum load is a function of V_{IN} and the device current limit. Consult the data sheet for more information on output current vs $\mathrm{V}_{\text {IN }}$.
8. $\quad V_{\text {OUT }}$ can be varied by setting jumpers JP2 and JP3 in accordance with the "Vout JUMPER CONFIGURATION" table on the front of the DC2397A demo board.
9. For operation in Burst Mode, move jumper JP1 to "Burst Mode" position. See the data sheet for more information on Burst Mode operation.
10. For operation with $\mathrm{V}_{\text {CC }}$ powered from $\mathrm{V}_{\text {OUT }}$, move JP6 to "EXT".

NOTE: If $V_{\text {OUT }}$ drops out of regulation, check to be sure the maximum load has not been exceeded, and that $V_{\mathbb{I N}_{N}}$ is not below the minimum value for regulation (see data sheet).

Figure 2. DC2397A Step Load Response. $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, $V_{\text {OUT }}=12 \mathrm{~V}$, Load Step is from 100 mA to 400 mA .

PUICK START PROCEDURE

Figure 3. DC2397A Thermal Performance. $\mathrm{V}_{\mathbb{I N}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V}$, Load $=600 \mathrm{~mA}$.

Figure 4. Proper Measurement Equipment Setup

Figure 5. Measuring Input or Output Ripple

DEMO MANUAL DC2397A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	3	C1, C5, C6	CAP CER 1 1 F 50V 10\% X7R 0805	MURATA, GRM21BR71H105KA12L
2	1	C2	CAP CER 10 $\mu \mathrm{F} 50 \mathrm{~V}$ X7R 1210	MURATA, GRM32ER71H106KA12L
3	2	C7, C8	CAP CER 22 $\mu \mathrm{F}$ 25V X7R 1210	MURATA, GRM32ER71E226KE15L
4	2	C9, C10	CAP CER 0.1 1 F 50V X7R 0603	MURATA, GRM188R71H104KA93D
5	1	C11	CAP CER 4.7 F 6.3V 10\% X5R 0603	MURATA, GRM188R60J475KE19D
6	1	C12	CAP CER 4.7 ${ }^{\text {F }} 50 \mathrm{~V}$ 10\% X5R 0805	MURATA, GRM21BR61H475KE51L
7	3	R1, R2, R4	RES 2M 1 1/16W 1\% 0402 SMD	VISHAY, CRCW04022M00FKED
8	1	L1	INDUCTOR, $10 \mu \mathrm{H}, \pm 20 \%$	COILCRAFT, XAL4040-103ME
9	1	U1	25V, 600mA BUCK-BOOST DC/DC CONVERTER	ANALOG DEVICES, LTC3130UDC-1 \#PBF

Additional Demo Board Circuit Components

10	0	C3, C14	CAP, 1210 (OPT)	
11	0	C4	CAP ALUM 220нF 35V 20\% SMD (OPT)	PANASONIC, EEE-FP1V221AP
12	0	C13	CAP, 0603 (OPT)	
13	0	R3, R5, R6	RES, 0402 (OPT)	
14	0	D1	DIODE SCHOTTKY 40V 2A SOD123 (OPT)	ROHM, RB068M-40TR
15	6	E1 - E6	TP, TURRET, 0.094", PBF	MILL-MAX, 2501-2-00-80-00-00-07-0
16	6	JP1 - JP6	JMP, 3-PIN 1 ROW 0.079" CC	SULLINS, NRPN031PAEN-RC
17	6	XJP1 - XJP6	SHUNT, 0.079" CENTER	SAMTEC, 2SN-BK-G
18	4		SPACER STACKING \#4 SCREW NYLON 0.500"	KEYSTONE, 8833

SCHEMATIC DIAGRAM

[^1]
Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($\$ 100.00$). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed

[^0]: Note 1: The demo board output current is a function of V_{IN}. Please refer to the data sheet for more information.

[^1]: A

 ## ESD Caution

 ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

