FEATURES

Latch-up proof
2.9 pF off source capacitance

34 pF off drain capacitance
0.2 pC charge injection

Low on resistance: 160Ω typical
$\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ dual-supply operation
9 V to 40 V single-supply operation
48 V supply maximum ratings
Fully specified at $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and +36 V
V_{ss} to V_{DD} analog signal range
Human body model (HBM) ESD rating
8 kV I/O port to supplies
2 kV I/O port to I/O port
8 kV all other pins
Supports defense and aerospace applications (AQEC standard)
Military temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Controlled manufacturing baseline
One assembly and test site
One fabrication site
Enhanced product change notification
Qualification data available on request

APPLICATIONS

Automatic test equipment
Data acquisition
Instrumentation
Avionics
Audio and video switching
Communication systems

GENERAL DESCRIPTION

The ADG5208-EP/ADG5209-EP are monolithic CMOS analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG5208-EP switches one of eight inputs to a common output, as determined by the 3-bit binary address lines, A0, A1, and A2. The ADG5209-EP switches one of four differential inputs to a common differential output, as determined by the 2-bit binary address lines, A0 and A1.
An EN input on both devices enables or disables the device. When EN is disabled, all channels switch off. The ultralow capacitance and charge injection of these switches make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth make these devices suitable for video signal switching.

Rev. C
Document Feedback
Information furmished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.
Each switch conducts equally well in both directions when on, and each switch has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked.

The ADG5208-EP/ADG5209-EP do not have V_{L} pins; instead, the logic power supply is generated internally by an on-chip voltage generator.
Additional application and technical information can be found in the ADG5208/ADG5209 data sheet.

PRODUCT HIGHLIGHTS

1. Trench Isolation Guards Against Latch-Up. A dielectric trench separates the P and N channel transistors to prevent latch-up even under severe overvoltage conditions.
2. 0.2 pC Charge Injection.
3. Dual-Supply Operation.

For applications where the analog signal is bipolar, the ADG5208-EP/ADG5209-EP can be operated from dual supplies of up to $\pm 22 \mathrm{~V}$.
4. Single-Supply Operation.

For applications where the analog signal is unipolar, the ADG5208-EP/ADG5209-EP can be operated from a single rail power supply of up to 40 V .
5. 3 V Logic-Compatible Digital Inputs.
$\mathrm{V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$.
6. No V_{L} Logic Power Supply Required.

ADG5208-EP/ADG5209-EP

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagram 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
± 20 V Dual Supply 4
12 V Single Supply 5
REVISION HISTORY
11/2017—Rev. B to Rev. C
Changes to Ordering Guide 19
8/2014—Rev. A to Rev. B
Changes to Table 1 3
Changes to Table 2 4
Changes to Table 3 5
Changes to Table 4 6
Changes to Figure 4 to Figure 9 12
Changes to Figure 10 and Figure 11 13
Changes to Figure 16 to Figure 21 14
Changes to Figure 22 to Figure 24 15
10/2013-Rev. 0 to Rev. A
Change to Operating Temperature Range, Table 7 9
Change to Ordering Guide 19
36 V Single Supply 6
Continuous Current per Channel, Sx, D, or Dx 8
Absolute Maximum Ratings 9
ESD Caution 9
Pin Configurations and Function Descriptions 10
Typical Performance Characteristics 12
Test Circuits 16
Outline Dimensions 19
Ordering Guide 19

ADG5208-EP/ADG5209-EP

SPECIFICATIONS

± 15 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Rflat (oN)	$\begin{aligned} & 160 \\ & 200 \\ & 3.5 \\ & 8 \\ & 40 \\ & 50 \end{aligned}$	250 9 65	$V_{D D}$ to $V_{S S}$ 280 10 70	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} ; \text { see Figure } 26 \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \end{aligned}$ $\mathrm{V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}(\mathrm{On}), \mathrm{I}_{\mathrm{S}}(\mathrm{On})$	$\begin{aligned} & \pm 0.005 \\ & \pm 0.1 \\ & \pm 0.005 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \pm 0.2 \\ & \pm 0.4 \\ & \pm 0.5 \end{aligned}$	$\begin{gathered} \pm 0.4 \\ \pm 1.4 \\ \pm 1.4 \end{gathered}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \text {; see Figure } 28 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \text {; see Figure } 28 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {; see Figure } 25 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current, I Inl or $\mathrm{l}_{\mathrm{INH}}$ Digital Input Capacitance, C_{IN}	0.002		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, ttransition	$\begin{aligned} & 150 \\ & 180 \end{aligned}$	210185	245	ns typ ns max ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
$t_{\text {on }}$ (EN)	125				$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	150		215	ns max	$\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 33
toff (EN)	160		230	ns typ ns max	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	185	210			$\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 33
Break-Before-Make Time Delay, t_{D}	55		20	ns typ ns min	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{s} 2}=10 \mathrm{~V} \text {; see Figure } 32 \end{aligned}$
Charge Injection, Qinj	0.2			$\mathrm{pC} \text { typ }$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ;$ see Figure 34
Off Isolation	-86			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 29
Channel-to-Channel Crosstalk	-80			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see }$ Figure 27
-3 dB Bandwidth					$\mathrm{RL}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 30
ADG5208-EP	110			MHz typ	
ADG5209-EP	240			MHz typ	
Insertion Loss	-6.4			dB typ	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 30
C_{s} (Off)	2.9			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$C_{\text {d }}$ (Off)					
ADG5208-EP	34			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG5209-EP	17				

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
$\begin{gathered} \hline C_{D}(\mathrm{On}), C_{S}(\mathrm{On}) \\ \text { ADG5208-EP } \\ \text { ADG5209-EP } \\ \hline \end{gathered}$	$\begin{aligned} & 37 \\ & 21 \end{aligned}$			pF typ pF typ	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS ldo Iss $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	$\begin{aligned} & 45 \\ & 55 \\ & 0.001 \end{aligned}$		80 1 $\pm 9 / \pm 22$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V min/V max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{5 S}=-16.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { GND }=0 \mathrm{~V} \end{aligned}$

${ }^{1}$ Guaranteed by design; not subject to production test.

± 20 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-20 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Rflat (on)	$\begin{aligned} & 140 \\ & 160 \\ & 3.5 \\ & 8 \\ & 34 \\ & 45 \end{aligned}$	200 9 55	$V_{D D}$ to $V_{S S}$ 230 10 60	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \text {; see Figure } 26 \\ & \mathrm{~V}_{\mathrm{DD}}=+18 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, IS (Off) Drain Off Leakage, ID (Off) Channel On Leakage, $I_{D}(O n), I_{s}(O n)$	$\begin{aligned} & \pm 0.005 \\ & \pm 0.1 \\ & \pm 0.005 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \pm 0.2 \\ & \pm 0.4 \\ & \pm 0.5 \end{aligned}$	$\begin{gathered} \pm 0.4 \\ \pm 1.4 \\ \pm 1.4 \end{gathered}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+22 \mathrm{~V}, V_{S S}=-22 \mathrm{~V} \\ & V_{S}= \pm 15 \mathrm{~V}, V_{D}=\mp 15 \mathrm{~V} \text {; see Figure } 28 \\ & V_{S}= \pm 15 \mathrm{~V}, V_{D}=\mp 15 \mathrm{~V} \text {; see Figure } 28 \\ & V_{S}=V_{D}= \pm 15 \mathrm{~V} \text {; see Figure } 25 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current, linı or linh Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.002 \\ & 3 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ Transition Time, ttranstion ton (EN) toff (EN) Break-Before-Make Time Delay, t_{D} Charge Injection, Qins Off Isolation Channel-to-Channel Crosstalk	$\begin{aligned} & 140 \\ & 170 \\ & 120 \\ & 140 \\ & 160 \\ & 185 \\ & 45 \\ & 0.4 \\ & \\ & \hline-86 \\ & -80 \end{aligned}$	$\begin{aligned} & 195 \\ & 170 \\ & 205 \end{aligned}$	$\begin{aligned} & 220 \\ & 195 \\ & 220 \\ & 20 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $V_{s}=10 \mathrm{~V}$; see Figure 31 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 33 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 33 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=10 \mathrm{~V}$; see Figure 32 $V_{S}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 34 $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, f=1 \mathrm{MHz}$; see Figure 29 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 27

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
-3 dB Bandwidth					$\mathrm{RL}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 30
ADG5208-EP	121			MHz typ	
ADG5209-EP	225			MHz typ	
Insertion Loss	-5.6			dB typ	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { see Figure } 30 \end{aligned}$
C_{5} (Off)	2.8			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)					
ADG5208-EP	33			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG5209-EP	17			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\text {S }}(\mathrm{On})$					
ADG5208-EP	36			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG5209-EP				pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-22 \mathrm{~V}$
IDD	50			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
	70		120	$\mu \mathrm{A}$ max	
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
				$\mu \mathrm{A}$ max	
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			$\pm 9 / \pm 22$	\checkmark min/V max	$\mathrm{GND}=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design; not subject to production test.

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V_{DD}	V	
On Resistance, Ron	350			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$; see Figure 26
	500	610	700	Ω max	$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
On-Resistance Match Between Channels, Δ Ron	5			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$
	20	22	24	Ω max	
On-Resistance Flatness, Rflat (on)	160			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$
	280	335	370	Ω max	
LEAKAGE CURRENTS Source Off Leakage, IS (Off)	± 0.005			nA typ	$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$
					$\mathrm{V}_{\mathrm{s}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; see }$ Figure 28
	± 0.1	± 0.2	± 0.4		
Drain Off Leakage, I_{D} (Off)	± 0.005			nA typ	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V}$; see
					Figure 28
	± 0.1	± 0.4	± 1.4	$n A \max$	
Channel On Leakage, Io (On), II (On)	± 0.01			nA typ	$\mathrm{V}_{S}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 10 \mathrm{~V}$; see Figure 25
	± 0.2	± 0.5	± 1.4	nA max	
DIGITAL INPUTS					
Input High Voltage, V ${ }_{\text {INH }}$	0.002		2.0	\checkmark min	
Input Low Voltage, $\mathrm{V}_{\text {INL }}$			0.8	V max	
Input Current, $\mathrm{I}_{\text {INL }}$ or $\mathrm{l}_{\mathrm{INH}}$				$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
			± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{ClN}_{1 \mathrm{~N}}$				pF typ	

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments	
DYNAMIC CHARACTERISTICS ${ }^{1}$						
Transition Time, ttransition	200			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	
	250	295	335	ns max	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 31	
ton (EN)	180			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	
	225	280	320	ns max	$\mathrm{V}_{s}=8 \mathrm{~V}$; see Figure 33	
toff (EN)	165			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	
	200	225	245	ns max	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 33	
Break-Before-Make Time Delay, to	95			ns typ	$\mathrm{RL}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	
			45	ns min	$\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{52}=8 \mathrm{~V}$; see Figure 32	
Charge Injection, Qin	0.2			pC typ	$V_{S}=6 \mathrm{~V}, R_{S}=0 \Omega, C_{L}=1 \mathrm{nF}$; see Figure 34	
Off Isolation	-86			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; } \\ & \text { see Figure } 29 \end{aligned}$	
Channel-to-Channel Crosstalk	-80			dB typ	$\begin{aligned} & \mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \\ & \text { see Figure } 27 \end{aligned}$	
-3 dB Bandwidth					$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 30	
ADG5208-EP	95			MHz typ		
ADG5209-EP	180			MHz typ		
Insertion Loss	-8.9			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { see Figure } 30 \end{aligned}$	
C_{s} (Off)	3.3			pF typ	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	
C_{D} (Off)						
ADG5208-EP	38			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	
ADG5209-EP	19			pF typ	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{CS}_{\text {(On) }} \mathrm{O}$						
ADG5208-EP	41			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	
ADG5209-EP	24			pF typ	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	
POWER REQUIREMENTS						$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$
IDD	40				$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
	50		75	$\mu \mathrm{A}$ max		
$V_{\text {DD }}$			9/40	V min/V max	$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$	

${ }^{1}$ Guaranteed by design; not subject to production test.

36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
Drain Off Leakage, $\mathrm{ID}^{\text {(Off })}$ Channel On Leakage, $\mathrm{I}_{\mathrm{D}}(\mathrm{On}), \mathrm{Is}_{5}(\mathrm{On})$	$\begin{aligned} & \pm 0.005 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \pm 0.4 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 1.4 \\ & \pm 1.4 \end{aligned}$	nA typ nA max nA typ nA max	$\mathrm{V}_{\mathrm{s}}=1 \mathrm{~V} / 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} / 1 \mathrm{~V} \text {; see }$ Figure 28 $V_{S}=V_{D}=1 \mathrm{~V} / 30 \mathrm{~V} \text {; see Figure } 25$
DIGITAL INPUTS Input High Voltage, Vinh Input Low Voltage, VINL Input Current, IInl or linh Digital Input Capacitance, C_{IN}	0.002 3		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {GND }}$ or V_{DD}
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, ttransition	170			ns typ	$\mathrm{RL}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	205	225	235	ns max	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$; see Figure 31
ton (EN)	150			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	180	195	215	ns max	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$; see Figure 33
toff (EN)	180			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	225	225	230	ns max	$\mathrm{V}_{5}=18 \mathrm{~V}$; see Figure 33
Break-Before-Make Time Delay, $t_{\text {D }}$	55			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			20	ns min	$\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=18 \mathrm{~V}$; see Figure 32
Charge Injection, Qinj	0.3			pC typ	$\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ;$ see Figure 34
Off Isolation	-86			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; } \\ & \text { see Figure } 29 \end{aligned}$
Channel-to-Channel Crosstalk	-80			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { see Figure } 27 \end{aligned}$
-3 dB Bandwidth					$\mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 30
ADG5208-EP	105			MHz typ	
ADG5209-EP	195			MHz typ	
Insertion Loss	-6.2			dB typ	$\mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 30
C_{5} (Off)	2.7			pF typ	$\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)					
ADG5208-EP	32			pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG5209-EP	16			pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{S}(\mathrm{On})$					
ADG5208-EP	35			pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG5209-EP				pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS IDD	$\begin{aligned} & 80 \\ & 100 \end{aligned}$		$\begin{aligned} & 155 \\ & 9 / 40 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V min/V max	$\mathrm{V}_{\text {DD }}=39.6 \mathrm{~V}$
					Digital inputs $=0 \mathrm{~V}$ or V_{DD}
VDD					$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\text {ss }}=0 \mathrm{~V}$

[^0]
CONTINUOUS CURRENT PER CHANNEL, Sx, D, OR Dx

Table 5. ADG5208-EP

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125{ }^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, Sx OR D				
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	40	24	14.5	mA maximum
LFCSP ($\theta_{\text {JA }}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	69	37	18	mA maximum
$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-20 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	42	26.5	14.5	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	75	40	18	mA maximum
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	28	19	12	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	40	25	14.5	mA maximum
$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	40	26	14.5	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	72	39	18	mA maximum

Table 6. ADG5209-EP

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, Sx OR Dx				
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	29	19	12	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	51	30	16	mA maximum
$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-20 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	30	20	12.5	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	55	32	17	mA maximum
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	20	14	10	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	29	20	12.5	mA maximum
$\mathrm{V}_{\text {DD }}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	30	20	12.5	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	54	31	17	mA maximum

ADG5208-EP/ADG5209-EP

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 7.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{\text {SS }}$	48 V
$V_{\text {DD }}$ to GND	-0.3 V to +48 V
$V_{\text {ss }}$ to GND	+0.3 V to -48 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Peak Current, Sx, D, or Dx Pins ADG5208-EP	126 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
ADG5209-EP	92 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
Continuous Current, Sx, D, or Dx Pins ${ }^{2}$	Data + 15\%
Temperature Range	
Operating	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance, $\theta_{\text {JA }}$	
16-Lead TSSOP (4-Layer Board)	$112.6^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP (4-Layer Board)	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb Free	260(+0/-5) ${ }^{\circ} \mathrm{C}$
HBM ESD	
I/O Port to Supplies	8 kV
I/O Port to I/O Port	2 kV
All Other Pins	8 kV

[^1]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.
Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. ADG5208-EP Pin Configuration (TSSOP)
Table 8. ADG5208-EP Pin Function Descriptions

Pin No.	Mnemonic	Description
1	A0	Logic Control Input. 2
Active High Digital Input. When low, the device is disabled and all switches are off. When high, the Ax logic		
inputs determine the on switches.		
3	VSS	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
4	S1	Source Terminal 1. This pin can be an input or an output.
5	S2	Source Terminal 2. This pin can be an input or an output.
6	S3	Source Terminal 3. This pin can be an input or an output.
7	S4	Source Terminal 4. This pin can be an input or an output.
8	S8	Drain Terminal. This pin can be an input or an output.
9	S7	Source Terminal 8. This pin can be an input or an output.
10	S5	Source Terminal 7. This pin can be an input or an output.
11	Vource Terminal 6. This pin can be an input or an output.	
12	GND	Source Terminal 5. This pin can be an input or an output.
13	Most Positive Power Supply Potential.	
14	Ground (0 V) Reference.	
15	Logic Control Input.	
16	Logic Control Input.	

Table 9. ADG5208-EP Truth Table

A2	A1	A0	EN	On Switch
X^{1}	X^{1}	X^{1}	0	None
0	0	0	1	1
0	0	1	2	
0	1	0	1	3
0	1	1	4	5
1	0	0	1	6
1	0	1	1	7
1	1	0	1	8
1	1	1	1	1

[^2]

Figure 3. ADG5209-EP Pin Configuration (TSSOP)
Table 10. ADG5209-EP Pin Function Descriptions
\(\left.$$
\begin{array}{l|l|l}\hline \text { Pin No. } & \text { Mnemonic } & \text { Description } \\
\hline 1 & \text { A0 } & \begin{array}{l}\text { Logic Control Input. } \\
2\end{array}
$$

EN \& Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs

determine the on switches.\end{array}\right]\)| Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground. |
| :--- |
| 3 |

Table 11. ADG5209-EP Truth Table

A1	A0	EN	On Switch Pair
X^{1}	X^{1}	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

[^3]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Ron as a Function of $V_{S,} V_{D}(\pm 20$ V Dual Supply)

Figure 5. Ron as a Function of $V_{S,} V_{D}(\pm 15 \mathrm{~V}$ Dual Supply)

Figure 6. Ron as a Function of V_{S}, V_{D} (12 V Single Supply)

Figure 7. Ron as a Function of V_{S}, V_{D} (36 V Single Supply)

Figure 8. Ron as a Function of V_{S}, V_{D} for Different Temperatures, ± 15 V Dual Supply

Figure 9. Ron as a Function of V_{S}, V_{D} for Different Temperatures, ± 20 V Dual Supply

Figure 10. Ron as a Function of $V_{S,} V_{D}$ for Different Temperatures, 12 V Single Supply

Figure 11. Ros as a Function of V_{S}, V_{D} for Different Temperatures, 36 V Single Supply

Figure 12. Leakage Currents vs. Temperature, ± 15 V Dual Supply

Figure 13. Leakage Currents vs. Temperature, ± 20 V Dual Supply

Figure 14. Leakage Currents vs. Temperature, 12 V Single Supply

Figure 15. Leakage Currents vs. Temperature, 36 V Single Supply

Figure 16. Off Isolation vs. Frequency, ± 15 V Dual Supply

Figure 17. Crosstalk vs. Frequency, ± 15 V Dual Supply

Figure 18. Charge Injection vs. Source Voltage, Drain to Source

Figure 19. ACPSRR vs. Frequency, ± 15 V Dual Supply

Figure 20. Bandwidth

Figure 21. Charge Injection vs. Source Voltage, Source to Drain

Figure 22. $t_{\text {TRANsition }}$ Times vs. Temperature

Figure 23. ADG5209-EP Capacitance vs. Source Voltage, ± 15 V Dual Supply

Figure 24. ADG5208-EP Capacitance vs. Source Voltage, ± 15 V Dual Supply

TEST CIRCUITS

Figure 25. On Leakage

Figure 26. On Resistance

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{v}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$
Figure 27. Channel-to-Channel Crosstalk

Figure 28. Off Leakage

Figure 29. Off Isolation

Figure 30. Bandwidth

Figure 31. Address to Output Switching Times, $t_{\text {Transition }}$

Figure 32. Break-Before-Make Time Delay, t_{D}

Figure 33. Enable Delay, ton (EN), toff (EN)

Figure 34. Charge Injection

OUTLINE DIMENSIONS

Figure 35. 16-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-16)
Dimensions shown in millimeters

ORDERING GUIDE ${ }^{1}$

Model	Temperature Range	Package Description	Package Option
ADG5208SRU-EP-RL7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package $[T S S O P]$	RU-16
ADG5209SRU-EP-RL7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package $[$ TSSOP $]$	RU-16
ADG5208SRUZ-EP-RL7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package $[$ TSSOP $]$	RU-16
ADG5209SRUZ-EP-RL7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

[^4]
NOTES

[^0]: Guaranteed by design; not subject to production test.

[^1]: ${ }^{1}$ Overvoltages at the $\mathrm{Ax}, \mathrm{EN}, \mathrm{Sx}, \mathrm{D}$, and Dx pins are clamped by internal diodes. Limit current to the maximum ratings given.
 ${ }^{2}$ See Table 5 and Table 6.

[^2]: ${ }^{1} \mathrm{X}$ is don't care.

[^3]: ${ }^{1} \mathrm{X}$ is don't care.

[^4]: ${ }^{1} Z=$ RoHS Compliant Part.

