FEATURES
"Clickless" Bilateral Audio Switching
Guaranteed "Break-Before-Make" Switching
Low Distortion: 0.003\% typ
Low Noise: 1 nV/ $\sqrt{\mathrm{Hz}}$
Superb OFF-Isolation: $\mathbf{1 2 0 ~ d B}$ typ
Low ON-Resistance: 60Ω typ
Wide Signal Range: $\mathrm{V}_{\mathrm{s}}= \pm \mathbf{1 8} \mathrm{V}$; $\mathbf{1 0} \mathrm{V}$ rms
Wide Power Supply Range: $\pm \mathbf{2 0}$ V max Available in Dice Form

GENERAL DESCRIPTION

The SSM 2402/SSM 2412 are dual analog switches designed specifically for high performance audio applications. Distortion and noise are negligible over the full audio operating range of 20 Hz to 20 kHz at signal levels of up to 10 V rms. The SSM 2402/ SSM 2412 offer a monolithic integrated alternative to expensive and noisy relays or complex discreteJFET circuits. Unlike conventional general-purpose CM OS switches, the SSM 2402/SSM 2412 provide superb fidelity without audio "clicks" during switching.
Conventional TTL or CM OS logic can be used to control the switch state. N o external pull-up resistors are needed. A "T" configuration provides superb OFF-isolation and true bilateral operation. The analog inputs and outputs are protected against overload and overvoltage.
An important feature is the guaranteed "break-before-make" for all units, even IC-to-IC. In large systems with multiple switching channels, all separate switching units must open before any switch goes into the ON -state. With the SSM 2402/ SSM 2412, you can be certain that multiple circuits will all break-before-make.
The SSM 2402/SSM 2412 represent a significant step forward in audio switching technology. Distortion and switching noise are significantly reduced in the new SSM 2402/SSM 2412 bipolarJFET switches relative to CM OS switching technology. Based on a new circuit topology that optimizes audio performance, the SSM 2402/SSM 2412 make use of a proprietary bipolarJFET process with thin-film resistor network capability. Nitride capacitors, which are very area efficient, are used for the proprietary ramp generator that controls the switch resistance transition. Very wide bandwidth amplifiers control the gate-to-source voltage over the full audio operating range for each switch. The ON -resistance remains constant with changes in signal amplitude and frequency, thus distortion is very low, less than 0.01% max.
The SSM 2402 is the first analog switch truly optimized for high-performance audio applications. For broadcasting and other switching applications which require a faster switching time, we recommend the SSM 2412-a dual analog switch with one-third of the switching time of the SSM 2402.

REV. A

[^0]
FUNCTIONAL BLOCK DIAGRAM

LOGIC HIGH $=$ ON
$\mathrm{s}_{1}, \mathrm{~s}_{2}=$ MAIN SWITCHES
$\mathbf{s}_{1}, \mathbf{s}_{2}=$ MANT
$\mathbf{s}_{3}=$ SHUNT SWITCH

PIN CONNECTIONS
14-Pin Epoxy DIP
(P-Suffix)

16-Pin SOL
(S-Suffix)

- GUARD PINS FOR INPUT/OUTPUT ISOLATION (GROUND FOR BEST PERFORMANCE)

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

SSM2402/SSM2412- SPECIFICATIONS

All specifications, tables, graphs, and application data apply to both the SSM2402 and SSM2412, unless otherwise noted.)

| | | | SSM2402/SSM2412
 Min
 Typ | Max |
| :--- | :--- | :--- | :--- | :--- | Units

NOTES

${ }^{1 \text { " }} V_{\text {IL }}$ " is the Logic C ontrol Input.
${ }^{2} \mathrm{C}$ urrent tested at $\mathrm{V}_{I N}=0 \mathrm{~V}$. This is the worst case condition.
${ }^{3} \mathrm{G}$ uaranteed by R_{ON} test condition.
${ }^{4} \mathrm{~T}$ urn-ON time is measured from the time the logic input reaches the 50% point to the time the output reaches 50% of the final value.
${ }^{5}$ T urn-OFF time is measured from the time the logic input reaches the 50% point to the time the output reaches 50% of the initial value.
${ }^{6}$ Switch is guaranteed by design to provide break-before-make operation.
${ }^{1}$ THD guaranteed by design and dynamic $\mathrm{R}_{\text {oN }}$ testing.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

Operating Temper	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Supply Voltage R ange	$\pm 20 \mathrm{~V}$
Analog Input Voltage Range	
Continuous	$\mathrm{V}-+3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq \mathrm{V}+-3.5 \mathrm{~V}$
M aximum Current T hrough Swi	h 20 mA
L ogic Input Voltage Range	$\mathrm{V}+$ Supply to -2 V
$V+$ Supply to Ground	+36 V
V- Supply to Ground	-20 V
$\mathrm{V}_{\text {A }}$ to V-Supply	+36 V

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}{ }^{*}$	$\boldsymbol{\theta}_{\mathbf{J c}}$	Units
14-Pin Plastic DIP (P)	76	33	${ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Pin SOL (S)	92	27	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{*} \theta_{\mathrm{JA}}$ is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for P-DIP package; $\theta_{J A}$ is specified for device soldered to printed circuit board for SOL package.

Timing Diagram

ORDERING GUIDE

Model	Temperature Range	Package Description
SSM 2402P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 -Pin Plastic DIP
SSM 2402S	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Pin SOL
SSM 2412P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 -Pin Plastic DIP
SSM 2412S	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Pin SOL

DICE CHARACTERISTICS

D ie Size 0.105×0.097 Inch, $10,185 \mathrm{sq}$. mils $(2.667 \times 2.464 \mathrm{~mm}, 6.57 \mathrm{sq} . \mathrm{mm})$

WAFER TEST LIMITS

Parameter	Symbol	Conditions ${ }^{1}$	Limit	Units
POSITIVE SUPPLY CURRENT	$+_{\text {SY }}$	$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$	7.5	mA max
NEGATIVE SUPPLY CURRENT	$-I_{S Y}$	$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$	6.0	mA max
GROUND CURRENT	$\mathrm{I}_{\text {GND }}$	$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$	1.5	mA max
LOGIC INPUT CURRENT	$\mathrm{I}_{\text {LOGIC }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}^{2}$	5.0	$\mu \mathrm{A}$ max
SWITCH ON RESISTANCE	R ${ }_{\text {ON }}$	$\begin{aligned} & -14.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+14.2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{A}}= \pm 10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IL}}=2.0 \mathrm{~V} \end{aligned}$	85	Ω max
Ron MATCH BETWEEN SWITCHES	R ON M ATCH	$\begin{aligned} & -14.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+14.2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{A}}= \pm 10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IL}}=2.0 \mathrm{~V} \end{aligned}$	5	\% max
SWITCH ON LEAKAGE CURRENT	$\mathrm{I}_{\text {S(ON })}$	$-14.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+14.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=2.0 \mathrm{~V}$	1.0	$\mu \mathrm{A}$ max
SWITCH OFF LEAKAGE CURRENT	$\mathrm{I}_{\text {S(OFF) }}$	$-14.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+14.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	1.0	$\mu \mathrm{A}$ max

NOTES

${ }^{1} V_{I L}=$ L ogic C ontrol Input; $\mathrm{V}_{\mathrm{A}}=$ Applied A nalog Input Voltage; $\mathrm{I}_{\mathrm{A}}=$ Applied A nalog Input Current.
${ }^{2}$ W orst C ase Condition.
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.

Total Harmonic Distortion vs. Frequency

SSM 2402 Switching Time vs. Temperature

Supply Current vs. Temperature

"OFF" Isolation vs. Frequency

SSM2412 Switching Time vs. Temperature

Overvoltage Characteristics

"ON" Resistance vs. Analog Voltage

Channel Separation vs. Frequency

Leakage Current vs. Analog Voltage

SSM $2402 T_{\text {ON }} / T_{\text {OFF }}$ Switching Response

SSM $2412 T_{\text {ON }} / T_{\text {OFF }}$ Switching Response

$V_{\text {IL }}=$ HIGH TO LOW

$V_{\text {IL }}=$ LOW TO HIGH

$\mathrm{V}_{\text {IL }}=$ HIGH TO LOW

$T_{\text {ON }} / T_{\text {off }}$ Switching Response Test Circuit

Switch ON/OFF Transition Test Circuit

Switching ON/OFF Transition

Switching Time Test Circuit

Simplified Schematic

APPLICATIONS INFORMATION

FUNCTIONAL SECTIONS

Each half of the SSM 2402/SSM 2412 are made up of three major functional blocks:

1. "T" Switch

C onsists of JFET switches S_{1} and S_{2} in series as the main switches and switch S_{3} as a shunt.

2. Ramp Generator

Generates a ramp voltage on command of the Control Input (see Figure 1). A LOW-to-HIGH TTL input at C ontrol Input initiates a ramp that goes from approximately -7 V to +7 V in 12 ms. Conversely, a HIGH-to-LOW TTL transition at Control Input will cause a downward ramp from approximately +7 V to -7 V in 12 ms for the SSM 2402, and 4 ms for the SSM 2412. The Ramp Generator also supplies the +3 V and -3 V reference levels for Switch Control.

3. Switch Control

The ramp from the Ramp Generator section is applied to two differential amplifiers (DA_{1} and DA_{2}) in the Switch C ontrol block. (See Simplified Schematic). One amplifier is referenced to -3 V and the other is referenced to +3 V . Switch C ontrol Outputs are:

- Main Switch Control-D rives two 0.25 mA current sources that control the inverting inputs of each op amp. When ON , the current sources cause a gate-to-source voltage of approximately 2.5 V which is sufficient to turn off S_{1} and S_{2}. When the current sources from M ain Switch C ontrol are OFF, each op amp acts as a unity-gain follower $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$ and both switches (S_{1} and S_{2}) will be ON .
-Shunt Switch Control-C ontrols the Shunt Switch of the " T " configuration.

SWITCH OPERATION

Unlike conventional analog switches, the SSM 2402/SSM 2412 are designed to ramp on and off gradually over several milliseconds. The soft transition prevents popping or clicking in audio systems. T ransients are minimized in active filters when the SSM 2402/SSM 2412 are used to switch component values.
To see how the SSM 2402/SSM 2412 switches work, first consider an OFF-to-ON transition. The Control Input is initially LOW and the Ramp Output is at approximately - 7 V . The M ain Switch Control is HIGH which drives current sources Q_{3} and Q_{4} to 0.25 mA each. These currents generate 2.5 V gate to-source back bias for each JFET switch (S_{1} and S_{2}) which holds them OFF.
The Shunt Switch Control is negative which holds the shunt JFET S_{3} ON. U ndesired feedthrough signals in the series JFET switches S_{1} and S_{2} are shunted to the negative supply rail through S_{3}.

Figure 1. Ramp Generator

Figure 2. Switch Control

When the C ontrol Input goes from LOW to HIGH, the Ramp G enerator slews in the positive direction as shown in F igure 2. When the ramp goes more positive than - 3 V , the Shunt Switch C ontrol is pulled positive by differential amplifier DA_{2} which thereby puts shunt switch S_{3} into the OFF state. N ote that S_{1} and S_{2} are still OFF, so at this time all three switches in the "T" are OFF.

SSM2402/SSM2412

When the Ramp Output reaches +3 V , and the drive for the M ain Switch Control output is gated OFF by differential amplifier DA_{1}, current sources Q_{3} and Q_{4} go to the OF F state and the V_{GS} of each main switch goes to zero. The high speed op amp followers provide essentially zero gate-to-source voltage over the full audio signal range; this in turn assures a constant low impedance in the ON state over the full audio signal range. T otal time to turn on the SSM 2402 switch is approximately 10.0 ms and 3.5 ms for the SSM 2412.
In systems using a large number of separate switches, there are advantages to having faster switching into OFF state than into the ON state. Break-before-make can be maintained at the system level. T o see how the SSM 2402/SSM 2412 guarantee break-before-make, consider the ON-to-OFF transition.
A Control Input LOW initiates the ON-to-OFF transition. The Ramp Generator integrates down from approximately +7 V towards -7 V. As the ramp goes through +3 V , the comparator controlling the M ain Switches (S_{1} and S_{2}) goes HIGH and turns on current sources Q_{3} and Q_{4} which thereby puts S_{1} and S_{2} into the OFF state. At this time, all switches in the "T" are OFF. When the ramp integrates down to -3 V , the Shunt Switch C ontrol changes state and pulls shunt switch S_{3} into the ON state. This completes the ON-to-OFF transition; S_{1} and S_{2} are OFF, and S_{3} is ON to shunt away any undesired feedthrough. N ote though that the ON-to-OFF time for main switches S_{1} and S_{2} is only the time interval required for the ramp to go from +7 V to +3 V , about 4 ms for the SSM 2402, and 1.5 ms for the SSM 2412. The time to turn on is about 2.5 times as long as the time to turn off.

Figure 3. Comparison of the SSM2402 and Typical CMOS Switch for Distortion

DIGITALLY-CONTROLLED ATTENUATOR

Figure 4 shows the usual approach to digitally-controlled attenuation. With S_{1} closed, the signal passes unattenuated to the output. With S_{1} open and S_{2} closed, the signal is attenuated by R_{1} and R_{2}. The advantage of this configuration is that the attenuator current does not have to flow through the switches. The disadvantage is that the output is undefined during the switching period, which can be several milliseconds.
The low distortion characteristics of the SSM 2402/SSM 2412 enable the alternate arrangement of Figure 5 to be used. N ow only one switch is required to change between two gains, and there is always a signal path to the output. Values for R_{2} will typically be in the low kilohm range.
For more gain steps and higher attenuation, the ladder arrangement of F igure 6 can be used. T his enables a wide dynamic range to be achieved without the need for large value resistors, which would result in degradation of the noise performance.

HIGH PERFORMANCE STEREO ROUTING SWITCHER
The SSM 2402 Dual Audio Switch comprises the nucleus for this 16 channels-to-one high performance stereo audio routing switcher, which features negligible noise and low distortion over the frequency range of 20 Hz to 20 kHz . This performance is achieved even while driving 600Ω loads at signal levels up to +30 dBu .
The SSM 2402 affords a much simplified electrical design and printed circuit board layout, along with reduced manufacturing cost, when compared with discrete JFET circuits of similar performance. The electrical performance of the design described is vastly superior to CM OS switch designs, which are more prone to failure resulting from electrical static discharge.
The switching control of the SSM 2402 may be activated by conventional mechanical switches or 5 volt TT L or CM OS logic circuits. The application shown utilizes a simple mechanical control switch for illustration purposes only. M any diverse X / Y control schemes, destination control, or computer controlled designs can be utilized.
The " T " configuration of the SSM 2402 switch provides excellent ON -OFF isolation. The SSM 2402 also features ms ramped turn on and ms ramped turn off for click-free switching. Additionally, the switch has a break-before-make switching sequence. Both features become significant in large audio switching systems where the audio path can pass through multiple switching elements. Such controlled switching is very important in large systems used in broadcast program switching or in production work.
The application circuit design also employs the SSM 2015 balanced input amplifier (Figure 7). The input impedance is high ($\approx 100 \mathrm{k} \Omega$), balanced or unbalanced. The input circuit incorporates a single pole RFI filter with a cutoff frequency set at 145 kH z. In addition, the input circuit attenuates the signal by 25 dB and extends the common-mode input voltage range to ± 98 volts peak, with common-mode rejection greater than 70 dB from 20 Hz to 20 kHz . The SSM 2015 is set to produce a 15 dB gain. The signal drive level into the SSM 2402 switch is then +10 dBu with $\mathrm{a}+20 \mathrm{dBu}$ input level and +14 dBu peak, well within ideal operating range. Good signal-to-noise is maintained, with generous head-room available by electing to use $\pm 18 \mathrm{~V}$ dc power supply voltages.

Figure 6.

Figure 7. Switcher Schematic

Figure 8. Switcher Functional Block Diagram

The routing switcher bus carries high level unbalanced audio, but is driven with low impedance sources. With the output impedance of the SSM 2015 at virtually 0Ω and the SSM 2402 switch ON , resistance is typically 60Ω. Bus-to-bus crosstalk is exceptionally low. For example, assuming 14 pF coupling between buses and 20 kHz signal, the crosstalk (isolation) exceeds 80 dB . The 14 pF would be representative for the 16×1 stereo design shown. Shielding of the buses with a printed circuit board ground plane and physically isolating the input and output circuits will reduce the crosstalk even further. The " T " configuration of the SSM 2402 switch virtually eliminates crosstalk between the various input signal sources.
The output amplifier incorporates a buffer amplifier that provides 4 dB of gain (nominally), with adjustable output level trim control. T he buffer also isolates the switching bus from the balanced output amplifier circuit. T he balanced output is designed to drive 600Ω loads and utilizes two SSM 2134 IC amplifiers. The differential design increases drive capability, yet increases the heat dissipation surface area, and keeps IC package temperature well within safe operating limits, even when driving 600Ω loads. The SSM 2134 is recommended due to its low noise, wide frequency response, and output drive current capabilities.

Overall performance of the 16×1 stereo switcher is noteworthy. Input-to-output frequency response is flat to within 1 dB over a 10 Hz to 50 kHz band. T otal harmonic distortion plus noise is less than 0.03%, from 20 Hz to 20 kHz . SM PTE intermodulation distortion is less than 0.02%. The use of $\pm 18 \mathrm{~V}$ dc power supplies produces a +30 dBm clip level, even when driving 600Ω loads.

Table I. Circuit Performance Specifications

M ax Input L evel	+30 dBu
Input Impedance, U nbalanced	$100 \mathrm{k} \Omega$
Input Impedance, B alanced	$200 \mathrm{k} \Omega$
Common-M ode Rejection (20 Hz to 20 kHz)	$>70 \mathrm{~dB}$
Common-M ode Voltage Limit	$\pm 98 \mathrm{~V}$ Peak
M ax Output Level	+30 dBu/dBm
Output Impedance	67Ω
Gain Control Range	$\pm 2 \mathrm{~dB}$
Output Voltage Slew R ate	$6 \mathrm{~V} / \mu \mathrm{s}$
Frequency Response ($\pm 0.05 \mathrm{~dB}$)	20 Hz to 20 kHz
Frequency Response ($\pm 0.5 \mathrm{~dB}$)	10 Hz to 50 kHz
THD + N oise (20 Hz to $20 \mathrm{kHz},+8 \mathrm{dBu}$)	0.005\%
THD + N oise (20 Hz to $20 \mathrm{kHz},+24 \mathrm{dBu}$)	0.03\%
IM D (SMPTE 60 Hz \& $4 \mathrm{kHz}, 4: 1,+24 \mathrm{dBu}$)	0.02\%
Crosstalk (20 Hz to 20 kHz)	$>80 \mathrm{~dB}$
S/N Ratio @ 0 dB Gain	135 dB

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

14-Pin Epoxy DIP

(P-Suffix)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

