## FEATURES

## Low RDSos of $12 \mathrm{~m} \Omega$

Low input voltage range: 1.8 V to 5.5 V
Quick output discharge (QOD) circuit (ADP197-02)
3 A continuous operating current at $70^{\circ} \mathrm{C}$
1.2 V logic-compatible enable input

Low $18 \mu \mathrm{~A}$ quiescent current, $\mathrm{V}_{\mathrm{IN}}<3 \mathrm{~V}$
Low $31 \mu \mathrm{~A}$ quiescent current, $\mathrm{V}_{\mathrm{IN}}=4.2 \mathrm{~V}$
Overtemperature protection
Ultralow shutdown current: <1 $\mu \mathrm{A}$
Ultrasmall $1.0 \mathrm{~mm} \times 1.5 \mathrm{~mm}, \mathbf{0 . 5} \mathrm{~mm}$ pitch, 6-ball WLCSP
Tiny $2.0 \mathrm{~mm} \times 2.0 \mathrm{~mm} \times 0.55 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch, 6 -lead LFCSP

## APPLICATIONS

## Mobile phones

Digital cameras and audio devices
Portable and battery-powered equipment

## GENERAL DESCRIPTION

The ADP197 is a high-side load switch designed for operation between 1.8 V and 5.5 V . This load switch provides power domain isolation, which helps extend battery operation. The device contains a low on-resistance, N -channel MOSFET that supports more than 3 A of continuous current and minimizes power loss. The low $18 \mu \mathrm{~A}$ quiescent current and ultralow shutdown current make the ADP197 ideal for battery-operated portable equipment. The built-in level shifter for enable logic makes the ADP197 compatible with many processors and GPIO controllers.

Overtemperature protection circuitry activates if the junction temperature exceeds $125^{\circ} \mathrm{C}$, thereby protecting itself and downstream circuits from potential damage.

TYPICAL APPLICATIONS CIRCUIT


Figure 1.

The ADP197-02 incorporates an internal quick output discharge (QOD) circuit to discharge the output capacitance when the ADP197-02 output is disabled
In addition to operating performance, the ADP197 WLCSP package occupies minimal printed circuit board (PCB) space with an area of less than $1.5 \mathrm{~mm}^{2}$ and a height of 0.60 mm .

The ADP197 is available in an ultrasmall $1.0 \mathrm{~mm} \times 1.5 \mathrm{~mm}$, 0.5 mm pitch, 6 -ball WLCSP and a $2.0 \mathrm{~mm} \times 2.0 \mathrm{~mm} \times$ $0.55 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch, 6-lead LFCSP.

Rev. C

## TABLE OF CONTENTS

Features ..... 1
Applications. ..... 1
Typical Applications Circuit .....  1
General Description .....  1
Revision History ..... 2
Specifications ..... 3
Timing Diagram .....  3
Absolute Maximum Ratings ..... 4
ESD Caution ..... 4
Pin Configurations and Function Descriptions ..... 5
REVISION HISTORY
10/14-Rev. B to Rev. C
Added 6-lead LFCSP

$\qquad$
.Universal
Changes to Features Section, General Description Section, and Figure 1 .....  1
Changes to Table 1 ..... 3
Changes to Table 3 ..... 4
Added Figure 4 and Table 5; Renumbered Sequentially ..... 5
Added Figure 7 ..... 6
Changes to Figure 9 ..... 6
Changes to Figure 13 ..... 7
Changes to Theory of Operation Section. ..... 10
Changes to Figure 26 Caption ..... 11
Changes to Figure 29 to Figure 33 and Timing Section ..... 12
Added Figure 35, Outline Dimensions ..... 13
Updated Outline Dimensions ..... 13
Changes to Ordering Guide ..... 13
5/12-Rev. A to Rev. B
Changes to Ordering Guide ..... 13
11/11-Rev. 0 to Rev. AChanged EN to GND Rating, Table 2 4
Typical Performance Characteristics .....  6
Theory of Operation ..... 10
Applications Information ..... 11
Capacitor Selection ..... 11
Ground Current ..... 11
Enable Feature ..... 11
Timing ..... 12
Outline Dimensions ..... 13
Ordering Guide ..... 13

## 4/11-Revision 0: Initial Version

## SPECIFICATIONS

$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{IN}}$, Iout $=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

| Parameter | Symbol | Test Conditions/Comments | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT VOLTAGE RANGE | $\mathrm{V}_{\text {IN }}$ | $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 1.8 |  | 5.5 | V |
| EN INPUT <br> EN Input <br> EN Input Pull-Down Current | $\mathrm{V}_{\mathrm{IH}}$ <br> VIL <br> Ien | $\begin{aligned} & \mathrm{V}_{\mathbb{N}}=1.8 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{N}}=1.8 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathbb{N}}=1.8 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \text { to }+110^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathbb{N}}=1.8 \mathrm{~V} \end{aligned}$ | 1.2 | $500$ | $\begin{aligned} & 0.4 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{nA} \end{aligned}$ |
| CURRENT <br> Ground Current <br> Off State Current <br> Continuous Operating Current ${ }^{1}$ | IGnd <br> loff <br> Iout | $\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{I}}=3.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{I}}=4.2 \mathrm{~V}, \mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \text { to }+110^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathbb{I}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {EN }}=\mathrm{GND}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=4.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {EN }}=\mathrm{GND}, \mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.8 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {EN }}=\mathrm{GND}, \mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \text { to }+110^{\circ} \mathrm{C}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\mathbb{I}}=1.8 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{I}}=1.8 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$ |  | 18 <br> 14 <br> 18 <br> 28 <br> 0.1 <br> 3 | $\begin{aligned} & 31 \\ & 20 \\ & 75 \end{aligned}$ | $\mu \mathrm{A}$ A |
| VIN TO VOUT RESISTANCE WLCSP <br> LFCSP | RDSon | $\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{N}}=4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{I}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{N}}=1.8 \mathrm{~V}, \mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathbb{N}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{I N}}=4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{I N}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{I N}}=1.8 \mathrm{~V}, \mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$ |  | $\begin{aligned} & 0.012 \\ & 0.012 \\ & 0.012 \\ & 0.012 \\ & 0.027 \\ & 0.027 \\ & 0.027 \\ & 0.027 \end{aligned}$ | $\begin{aligned} & 0.017 \\ & 0.036 \end{aligned}$ | $\begin{aligned} & \Omega \\ & \Omega \end{aligned}$ |
| Vout TURN-ON DELAY TIME Turn-On Delay Time | ton_diy | See Figure 2 $\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=1 \mu \mathrm{~F}$ |  | 1 |  | ms |
| ACTIVE PULL-DOWN RESISTANCE (ADP197-02 OPTION ONLY) | Rpulloown | $\mathrm{V}_{\mathrm{IN}}=3.2 \mathrm{~V}$ |  | 380 |  | $\Omega$ |
| THERMAL SHUTDOWN Thermal Shutdown Threshold Thermal Shutdown Hysteresis | TSsd TSsD-Hys | TJ rising |  | $\begin{aligned} & 125 \\ & 15 \end{aligned}$ |  | $\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$ |

${ }^{1}$ At an ambient temperature of $85^{\circ} \mathrm{C}$, the device can withstand a continuous current of 2.22 A . At a load current of 3 A , the operational lifetime derates to 2190 hours.

## TIMING DIAGRAM



Figure 2. Timing Diagram

## ABSOLUTE MAXIMUM RATINGS

Table 2.

| Parameter | Rating |
| :--- | :--- |
| VIN to GND | -0.3 V to +6.5 V |
| VOUT to GND | -0.3 V to VIN |
| EN to GND | -0.3 V to +6.5 V |
| Continuous Drain Current | $\pm 4 \mathrm{~A}$ |
| $\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | $\pm 2.22 \mathrm{~A}$ |
| $\mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ | -50 mA |
| Continuous Diode Current | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ |
| Operating Junction Temperature Range | JEDEC J-STD-020 |
| Soldering Conditions |  |

Table 3. Typical $\theta_{J A}$ and $\Psi_{J B}$ Values

| Package Type | $\boldsymbol{\theta}_{\mathrm{JA}}$ | $\boldsymbol{\Psi}_{\text {Јв }}$ | Unit |
| :--- | :--- | :--- | :--- |
| 6-Ball, 0.5 mm Pitch WLCSP | 260 | 58 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 6-Lead, 0.65 mm Pitch LFCSP | 68.9 | 44.1 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## ESD CAUTION

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



Figure 3. 6-Ball WLCSP Pin Configuration

Table 4. 6-Ball WLCSP Pin Function Descriptions

| Pin No. | Mnemonic | Description |
| :--- | :--- | :--- |
| A1, B1 | VIN | Input Voltage. |
| A2, B2 | VOUT | Output Voltage. |
| C1 | EN | Enable Input. Drive EN high to turn on the switch and drive EN low to turn off the switch. |
| C2 | GND | Ground. |



Table 5. 6-Lead LFCSP Pin Function Descriptions

| Pin No. | Mnemonic | Description |
| :--- | :--- | :--- |
| 1 | VOUT1 | Output Voltage. Connect VOUT1 and VOUT2 together. |
| 2 | VOUT2 | Output Voltage. Connect VOUT1 and VOUT2 together. |
| 3 | GND | Ground. |
| 4 | EN | Enable Input. Drive EN high to turn on the switch and drive EN low to turn off the switch. |
| 5 | VIN2 | Input Voltage. Connect VIN1 and VIN2 together. |
| 6 | VIN1 | Input Voltage. Connect VIN1 and VIN2 together. |
|  | EP | Exposed Pad. The exposed pad must be connected to ground. |

## TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{IN}}, \mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.


Figure 5. RDSon vs. Temperature, 500 mA


Figure 6. RDS ${ }_{\text {on }}$ vs. Temperature, 3 A, Different Input Voltages ( $V_{I N}$ )


Figure 7. RDSon (LFCSP) vs. Temperature, 500 mA , Different Input Voltages (VIN)


Figure 8. RDSon vs. Input Voltage ( $V_{I N}$ ), Different Load Currents


Figure 9. Voltage Drop vs. Temperature, Different Load Currents


Figure 10. Ground Current vs. Temperature, Different Load Currents, $V_{\text {IN }}=1.8 \mathrm{~V}$


Figure 11. Ground Current vs. Temperature, Different Load Currents, $V_{I N}=4.2 \mathrm{~V}$


Figure 12. Ground Current vs. Temperature, Different Load Currents, $V_{\text {IN }}=5.5 \mathrm{~V}$


Figure 13. Ground Current vs. Load Current, Different Input Voltages (VIN)


Figure 14. IGND Shutdown Current vs. Temperature, Output Open, Different Input Voltages (VIN)


Figure 15. $I_{G N D}$ Shutdown Current vs. Temperature, $V_{\text {OUT }}=0 \mathrm{~V}$, Different Input Voltages (VIN)


Figure 16. Typical Turn-On Time and Inrush Current, $V_{I N}=1.9 \mathrm{~V}$, 200 mA Load


Figure 17. Typical Turn-On Time and Inrush Current, $V_{I N}=1.9 \mathrm{~V}$, 2 A Load


Figure 18. Typical Turn-On Time and Inrush Current, $V_{I N}=1.9 \mathrm{~V}$, 200 mA Load, Cout $=100 \mu \mathrm{~F}$


Figure 19. Typical Turn-On Time and Inrush Current, $V_{I N}=1.9 \mathrm{~V}$, 2 A Load, Cout $=100 \mu \mathrm{~F}$


Figure 20. Typical Turn-On Time and Inrush Current, $V_{I N}=5.5 \mathrm{~V}$, 200 mA Load


Figure 21. Typical Turn-On Time and Inrush Current, $V_{I N}=5.5 \mathrm{~V}$, 2 A Load


Figure 22. Typical Turn-On Time and Inrush Current, $V_{I N}=5.5 \mathrm{~V}$, 200 mA Load, Cout $=100 \mu \mathrm{~F}$


Figure 23. Typical Turn-On Time and Inrush Current, $V_{I N}=5.5 \mathrm{~V}$, 2 A Load, Cout $=100 \mu F$


Figure 24. Iout Shutdown Current vs. Temperature, Vout $=0$ V, Different Input Voltages ( $V_{\text {IN }}$ )

## THEORY OF OPERATION



Figure 25. Functional Block Diagram
The ADP197 is a high-side NMOS load switch, controlled by an internal charge pump. The ADP197 is designed to operate with power supply voltages between 1.8 V and 5.5 V .
An internal charge pump biases the NMOS switch to achieve a relatively constant, ultralow on resistance of $12 \mathrm{~m} \Omega$ across the entire input voltage range. The use of the internal charge pump also allows for controlled turn-on times. Turning the NMOS switch on and off is controlled by the enable input pin (EN), which is capable of interfacing directly with 1.8 V logic signals.

The ADP197 is capable of 3 A of continuous operating current as long as $\mathrm{T}_{\mathrm{J}}$ is less than $70^{\circ} \mathrm{C}$. At $85^{\circ} \mathrm{C}$, the rated current drops to 2.22 A .
The overtemperature protection circuit activates if the load current causes the junction temperature to exceed $125^{\circ} \mathrm{C}$. When this occurs, the overtemperature protection circuitry disables the output until the junction temperature falls below approximately $110^{\circ} \mathrm{C}$, at which point the output is reenabled. If the fault condition persists, the output cycles off and on until the fault is removed.

The ADP197-02 incorporates a QOD circuit to discharge the output capacitance when the ADP197-02 output is disabled.
ESD protection structures are shown in the block diagram as Zener diodes.

The ADP197 is a low quiescent current device with a nominal $4 \mathrm{M} \Omega$ pull-down resistor on its EN pin. The package is a spacesaving $1.0 \mathrm{~mm} \times 1.5 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch, 6 -ball WLCSP and a tiny $2.0 \mathrm{~mm} \times 2.0 \mathrm{~mm} \times 0.55 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch, 6-lead LFCSP.

## APPLICATIONS INFORMATION

CAPACITOR SELECTION

## Output Capacitor

The ADP197 is designed for operation with small, space-saving ceramic capacitors but functions with most commonly used capacitors when the effective series resistance (ESR) value is carefully considered. The ESR of the output capacitor affects the response to load transients. A typical $1 \mu \mathrm{~F}$ capacitor with an ESR of $0.1 \Omega$ or less is recommended for good transient response. Using a larger value of output capacitance improves the transient response to large changes in load current.

## Input Bypass Capacitor

Connecting at least $1 \mu \mathrm{~F}$ of capacitance from VIN to GND reduces the circuit sensitivity to the printed circuit board (PCB) layout, especially when high source impedance or long input traces are encountered. When greater than $1 \mu \mathrm{~F}$ of output capacitance is required, increase the input capacitor to match it.

## GROUND CURRENT

The major source for ground current in the ADP197 is the internal charge pump for the FET drive circuitry. Figure 26 shows the typical ground current when $\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{IN}}$, and varies from 1.8 V to 5.5 V .


Figure 26. Ground Current vs. Input Voltage ( $V_{I N}$ ), Different Load Currents

## ENABLE FEATURE

The ADP197 uses the EN pin to enable and disable the VOUT pin under normal operating conditions. As shown in Figure 27, when a rising voltage ( $\mathrm{V}_{\mathrm{EN}}$ ) on the EN pin crosses the active threshold, VOUT turns on. When a falling voltage $\left(\mathrm{V}_{\mathrm{EN}}\right)$ on the EN pin crosses the inactive threshold, VOUT turns off.


Figure 27. Typical EN Operation
As shown in Figure 27, the EN pin has hysteresis built into it. This built-in hysteresis prevents on/off oscillations that can occur due to noise on the EN pin as it passes through the threshold points.
The EN pin active and inactive thresholds derive from the $\mathrm{V}_{\text {IN }}$ voltage; therefore, these thresholds vary with the changing input voltage. Figure 28 shows the typical EN active and inactive thresholds when the input voltage varies from 1.8 V to 5.5 V .


Figure 28. Typical EN Threshold vs. Input Voltage (VIN)

## TIMING

Turn-on delay is defined as the interval between the time that $\mathrm{V}_{\mathrm{EN}}$ exceeds the rising threshold voltage and when Vout rises to $\sim 10 \%$ of its final value. The ADP197 includes circuitry that has a typical 1 ms turn-on delay and a controlled rise time to limit the $\mathrm{V}_{\text {IN }}$ inrush current. As shown in Figure 29 and Figure 30, the turnon delay is nearly independent of the input voltage.


Figure 29. Typical Turn-On Delay Time with $V_{I N}=1.9 \mathrm{~V}, I_{L O A D}=200 \mathrm{~mA}$


Figure 30. Typical Turn-On Delay Time with $V_{I N}=5.5 \mathrm{~V}, I_{\text {LOAD }}=220 \mathrm{~mA}$
The rise time is defined as the time it takes the output voltage to rise from $10 \%$ to $90 \%$ of Vout reaching its final value. It is dependent on the rise time of the internal charge pump.
For very large values of output capacitance, the RC time constant (where C is the load capacitance ( $\mathrm{C}_{\text {LOAD }}$ ) and R is the $\mathrm{RDS}_{\text {oN }} \| \mathrm{R}_{\text {LOAD }}$ ) can become a factor in the rise time of the output voltage. Because $\mathrm{RDS}_{\text {ON }}$ is much smaller than $\mathrm{R}_{\text {LOAD }}$, an adequate approximation for RC is $\mathrm{RDS}_{\text {on }} \times \mathrm{C}_{\text {LOAD. }}$. An input or load capacitor is not required for the ADP197 although capacitors can be used to suppress noise on the board. Figure 31 and Figure 32 show the inrush current when Cload is $100 \mu \mathrm{~F}$.


Figure 31. Typical Rise Time and Inrush Current,
$C_{L O A D}=100 \mu F, V_{I N}=1.9 \mathrm{~V}, I_{\text {LOAD }}=270 \mathrm{~mA}$


Figure 32. Typical Rise Time and Inrush Current, $C_{L O A D}=100 \mu F, V_{I N}=5.5 \mathrm{~V}, I_{L O A D}=350 \mathrm{~mA}$
The turn-off time is defined as the time it takes for the output voltage to fall from $90 \%$ to $10 \%$ of Vout reaching its final value. It is also dependent on the RC time constant of the output capacitance and load resistance. Figure 33 shows the typical turn-off time with $\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, Cout $=1 \mu \mathrm{~F}$, and $\mathrm{R}_{\text {LOAD }}=18 \Omega$.


Figure 33. Typical Turn-Off Time

## OUTLINE DIMENSIONS



Figure 34. 6-Ball Wafer Level Chip Scale Package [WLCSP]
(CB-6-2)
Dimensions shown in millimeters


Figure 35. 6-Lead Lead Frame Chip Scale Package [LFCSP_UD] $2.00 \mathrm{~mm} \times 2.00 \mathrm{~mm}$ Body, Ultra Thin, Dual Lead (CP-6-3)
Dimensions shown in millimeters
ORDERING GUIDE

| Model $^{\mathbf{1}}$ | Temperature <br> Range | Package Description | Package <br> Option | Branding | On/Off <br> Time ( $\boldsymbol{\mu}$ s) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ADP197ACBZ-R7 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 6-Ball Wafer Level Chip Scale Package [WLCSP] | CB-6-2 | 87 | 300 |
| ADP197ACBZ-01-R7 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 6-Ball Wafer Level Chip Scale Package [WLCSP] | CB-6-2 | AP | 20 |
| ADP197ACPZN-01-R7 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 6-Lead Lead Frame Chip Scale Package [LFCSP_UD] | CP-6-3 | AP | 20 |
| ADP197ACPZN-02-R7 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 6-Lead Lead Frame Chip Scale Package [LFCSP_UD] | CP-6-3 | D8 | 20 |
| ADP197CB-EVALZ |  | Evaluation Board |  |  |  |
| ADP197CP-EVALZ |  | Evaluation Board |  |  |  |

${ }^{1} Z=$ RoHS Compliant Part.

