FEATURES

+1.8 V to +5.5 V Single Supply
$\pm 2.5 \mathrm{~V}$ Dual Supply
2.5Ω ON Resistance
0.5Ω ON Resistance Flatness
100 pA Leakage Currents
40 ns Switching Times
Single 16-to-1 Multiplexer ADG706
Differential 8-to-1 Multiplexer ADG707
28-Lead TSSOP Package
Low-Power Consumption
TTL/CMOS-Compatible Inputs

APPLICATIONS

Data Acquisition Systems
Communication Systems
Relay Replacement
Audio and Video Switching
Battery-Powered Systems

GENERAL DESCRIPTION

The ADG706 and ADG707 are low-voltage, CMOS analog multiplexers comprising 16 single channels and eight differential channels, respectively. The ADG706 switches one of 16 inputs (S1-S16) to a common output, D, as determined by the 4 -bit binary address lines A0, A1, A2, and A3. The ADG707 switches one of eight differential inputs to a common differential output as determined by the 3-bit binary address lines A0, A1, and A2. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF.
Low-power consumption and operating supply range of 1.8 V to 5.5 V make the ADG706 and ADG707 ideal for battery-powered, portable instruments. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels. These devices are also designed to operate from a dual supply of $\pm 2.5 \mathrm{~V}$.
These multiplexers are designed on an enhanced submicron process that provides low-power dissipation yet gives high switching speed, very low ON resistance, and leakage currents. ON resistance is in the region of a few ohms and is closely matched between switches and very flat over the full signal range. These parts can operate equally well as either multiplexers or demultiplexers and have an input signal range that extends to the supplies.
The ADG706 and ADG707 are available in small 28-lead TSSOP packages.

REV. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

1. Single-/dual-supply operation. The ADG706 and ADG707 are fully specified and guaranteed with 3 V and 5 V single-supply and $\pm 2.5 \mathrm{~V}$ dual-supply rails.
2. Low ON resistance (2.5Ω typical)
3. Low-power consumption ($<0.01 \mu \mathrm{~W}$)
4. Guaranteed break-before-make switching action
5. Small 28-lead TSSOP package

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2002-2016

ADG706/ADG707-SPECIFICATIONS ${ }^{1}$
$\left(V_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}\right.$, unless otherwise noted.)

NOTES
${ }^{1}$ Temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

[^0]
ADG706/ADG707

DUAL SUPPLY ${ }^{1}\left(\mathrm{~V}_{00}=+2.5 \mathrm{v} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V} \pm 10 \%\right.$, , $\mathrm{ND}=0 \mathrm{~V}$, unless otherwise noted.)

NOTES

${ }^{1}$ Temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$ ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)	
V_{DD} to V_{SS}	
V_{DD} to GND	-0.3 V to +7 V
$\mathrm{V}_{\text {SS }}$ to GND	+0.3 V to -3.5 V
Analog Inputs ${ }^{2}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , Whichever Occurs First
Digital Inputs ${ }^{2}$	$\ldots-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , Whichever Occurs First
Peak Current, S or D 100 mA
(Pu	at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max)
Continuous Current, S or D	30 mA
Operating Temperature Range	
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)
V_{DD} to V_{SS}. 7 V
V_{DD} to GND -0.3 V to +7 V
$\mathrm{V}_{\text {SS }}$ to GND . +0.3 V to -3.5 V
Analog Inputs ${ }^{2} \ldots V_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or
30 mA , Whichever Occurs First 30 mA , Whichever Occurs First
 (Pused at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max
Continuous Current, S or D . 30 mA
ing Temperature Range
Industrial
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

[^1]ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG706BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG706BRU-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG706BRUZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG706BRUZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG706BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG707BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG707BRU-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG707BRUZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG707BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

PIN CONFIGURATIONS

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG706/ADG707 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Table I. ADG706 Truth Table

A3	A2	A1	A0	EN	ON Switch
X	X	X	X	0	NONE
0	0	0	0	1	1
0	0	0	1	1	2
0	0	1	0	1	3
0	0	1	1	1	4
0	1	0	0	1	5
0	1	0	1	1	6
0	1	1	0	1	7
0	1	1	1	1	8
1	0	0	0	1	9
1	0	0	1	1	10
1	0	1	0	1	11
1	0	1	1	1	12
1	1	0	0	1	13
1	1	0	1	1	14
1	1	1	0	1	15
1	1	1	1	1	16
X Don't Care					

Table II. ADG707 Truth Table

A2	A1	A0	EN	ON Switch Pair
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8
X Don't Care				

TERMINOLOGY

Typical Performance Characteristics-ADG706/ADG707

TPC 1. ON Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

TPC 4. ON Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

TPC 7. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

TPC 2. ON Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

TPC 5. ON Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

TPC 8. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

TPC 3. ON Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

TPC 6. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

TPC 9. Leakage Currents as a Function of Temperature

ADG706/ADG707

TPC 10. Leakage Currents as a Function of Temperature

TPC 13. OFF Isolation vs. Frequency

TPC 11. ON Response vs. Frequency

TPC 14. Charge Injection vs. Source Voltage

TPC 12. Supply Currents vs. Input Switching Frequency

TPC 15. Crosstalk vs. Frequency

TEST CIRCUITS

Test Circuit 1. ON Resistance

Test Circuit 2. I_{S} (OFF)

*SIMILAR CONNECTION FOR ADG707

Test Circuit 3. I_{D} (OFF)

Test Circuit 4. $I_{D}(O N)$

Test Circuit 5. Switching Time of Multiplexer, $t_{\text {TRANSItION }}$

Test Circuit 6. Break-Before-Make Delay, $t_{\text {OPEN }}$

Test Circuit 7. Enable Delay, $t_{\text {ON }}(E N)$, $t_{\text {OFF }}$ (EN)

Test Circuit 8. Charge Injection

Test Circuit 9. OFF Isolation and Bandwidth

Test Circuit 10. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

ADG706/ADG707
 Revision History

Location Page
3/16-Data Sheet changed from REV. A to REV. B.
Changes to ORDERING GUIDE 5
Updated OUTLINE DIMENSIONS 11
5/02—Data Sheet changed from REV. 0 to REV. A.
Edits to FEATURES and PRODUCT HIGHLIGHTS 1
Changes to SPECIFICATIONS 2
Edits to ABSOLUTE MAXIMUM RATINGS notes 5
Edits to TPCs 2, 3, 4, 6-9, 12, 14 7-8
Edits to Test Circuits 9 and 10 10

[^0]: NOTES
 ${ }^{1}$ Temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.
 Specifications subject to change without notice.

[^1]: Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
 Junction Temperature
 $150^{\circ} \mathrm{C}$
 TSSOP Package

 $$
 \theta_{\mathrm{JA}} \text { Thermal Impedance . } 97.9^{\circ} \mathrm{C} / \mathrm{W}
 $$

 $\theta_{\text {JC }}$ Thermal Impedance . $14^{\circ} \mathrm{C} / \mathrm{W}$
 Lead Temperature, Soldering (10 sec) $300^{\circ} \mathrm{C}$
 IR Reflow, Peak Temperature . $220^{\circ} \mathrm{C}$
 NOTES
 ${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
 ${ }^{2}$ Overvoltages at A, EN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

