LC ${ }^{2}$ MOS Latchable 4-/8-Channel High Performance Analog Multiplexers

FEATURES

44 V Supply Maximum Ratings
V_{ss} to V_{DD} Analog Signal Range
Low On Resistance (60Ω typ)
Low Power Consumption (1.6 mW max)
Low Charge Injection (<4 pC typ)
Fast Switching
Break-Before-Make Switching Action
Plug-In Replacement for DG428/DG429
APPLICATIONS
Automatic Test Equipment
Data Acquisition Systems
Communication Systems
Avionics and Military Systems
Microprocessor Controlled Analog Systems
Medical Instrumentation

GENERAL DESCRIPTION

The ADG428 and ADG429 are monolithic CMOS analog multiplexers comprising eight single channels and four differential channels respectively. On-chip address and control latches facilitate microprocessor interfacing. The ADG428 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1 and A2. The ADG429 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF. All the control inputs, address and enable inputs are TTL compatible over the full specified operating temperature range. This makes the part suitable for bus-controlled systems such as data acquisition systems, process controls, avionics and ATEs because the TTLcompatible address latches simplify the digital interface design and reduce the board space required.
The ADG428/ADG429 are designed on an enhanced LC 2 MOS process that provides low power dissipation yet gives high switching speed and low on resistance. Each channel conducts equally well in both directions when ON and has an input signal range that extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All channels exhibit break-before-make switching action, preventing momentary shorting when switching channels. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.
The ADG428/ADG429 are improved replacements for the DG428/DG429 Analog Multiplexers.

REV. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

1. Extended Signal Range

The ADG428/ADG429 are fabricated on an enhanced LC^{2} MOS process, giving an increased signal range that extends to the supply rails.
2. Low Power Dissipation
3. Low R_{ON}
4. Single/Dual Supply Operation
5. Single Supply Operation

For applications where the analog signal is unipolar, the ADG428/ADG429 can be operated from a single rail power supply. The parts are fully specified with a single +12 V power supply and will remain functional with single supplies as low as +5 V .

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

ADG428/ADG429-SPECIFICATIONS

DUAL SUPPLY1 ${ }_{\left(V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \overline{\mathrm{WR}}=0 \mathrm{~V}, \overline{\mathrm{RS}}=2.4 \mathrm{~V} \text { unless otherwise noted) }\right) ~(1)}$

NOTES

${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; T Version: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

SINGLESUPPLY1 $\left(V_{D D}=+12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \overline{\mathrm{WR}}=0 \mathrm{~V}, \overline{\mathrm{RS}}=2.4 \mathrm{~V}\right.$ unless otherwise noted)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\]}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\]}} \& \multirow[b]{2}{*}{Units} \& \multirow[b]{2}{*}{Test Conditions/Comments} \\
\hline \& \& \& \& \& \& \\
\hline \begin{tabular}{l}
ANALOG SWITCH \\
Analog Signal Range \(\mathrm{R}_{\mathrm{ON}}\) \(\Delta \mathrm{R}_{\mathrm{ON}}\)
\end{tabular} \& \[
\begin{array}{r}
90 \\
10 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 0 \text { to } V_{D D} \\
\& 200
\end{aligned}
\] \& \[
\begin{aligned}
\& 90 \\
\& 10 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \text { to } V_{\mathrm{DD}} \\
\& 200
\end{aligned}
\] \& \begin{tabular}{l}
V \\
\(\Omega\) typ \\
\(\Omega\) max \\
\% max
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-500 \mu \mathrm{~A} \\
\& 0 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
LEAKAGE CURRENTS \\
Source OFF Leakage \(\mathrm{I}_{\mathrm{S}}\) (OFF) \\
Drain OFF Leakage \(\mathrm{I}_{\mathrm{D}}\) (OFF) ADG428 \\
ADG429 \\
Channel ON Leakage \(\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})\) ADG428 \\
ADG429
\end{tabular} \& \[
\begin{aligned}
\& \pm 0.005 \\
\& \pm 0.5 \\
\& \pm 0.015 \\
\& \pm 1 \\
\& \pm 0.008 \\
\& \pm 1 \\
\& \pm 0.02 \\
\& \pm 1 \\
\& \pm 0.01 \\
\& \pm 1
\end{aligned}
\] \& \begin{tabular}{l}
\(\pm 50\) \\
\(\pm 100\) \\
\(\pm 50\) \\
\(\pm 100\) \\
\(\pm 50\)
\end{tabular} \& \[
\begin{aligned}
\& \pm 0.005 \\
\& \pm 0.5 \\
\& \pm 0.015 \\
\& \pm 1 \\
\& \pm 0.008 \\
\& \pm 1 \\
\& \pm 0.02 \\
\& \pm 1 \\
\& \pm 0.01 \\
\& \pm 1
\end{aligned}
\] \& \begin{tabular}{l}
\(\pm 50\) \\
\(\pm 100\) \\
\(\pm 50\) \\
\(\pm 100\) \\
\(\pm 50\)
\end{tabular} \& \begin{tabular}{l}
nA typ \\
nA max \\
nA max \\
nA max
\end{tabular} \& \begin{tabular}{l}
\[
\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} / 10 \mathrm{~V} ;
\] \\
Test Circuit 2
\[
\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} / 10 \mathrm{~V} ;
\] \\
Test Circuit 3
\[
\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V} / 0 \mathrm{~V} ;
\] \\
Test Circuit 4
\end{tabular} \\
\hline \begin{tabular}{l}
DIGITAL INPUTS \\
Input High Voltage, \(\mathrm{V}_{\text {INH }}\) Input Low Voltage, \(\mathrm{V}_{\text {INL }}\) Input Current \(\mathrm{I}_{\text {INL }}\) or \(\mathrm{I}_{\text {INH }}\) \(\mathrm{C}_{\mathrm{IN}}\), Digital Input Capacitance
\end{tabular} \& 8 \& 2.4
0.8

± 1 \& 8 \& 2.4
0.8

± 1 \& | V min |
| :--- |
| V max |
| $\mu \mathrm{A} \max$ |
| pF typ | \& \[

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}}=0 \text { or } \mathrm{V}_{\mathrm{DD}} \\
& \mathrm{f}=1 \mathrm{MHz}
\end{aligned}
$$
\]

\hline | DYNAMIC CHARACTERISTICS ${ }^{2}$ |
| :--- |
| ${ }^{\mathrm{t}}$ transition | \& \[

$$
\begin{aligned}
& 250 \\
& 350
\end{aligned}
$$

\] \& 450 \& \[

$$
\begin{aligned}
& 250 \\
& 350
\end{aligned}
$$

\] \& 450 \& ns typ ns max \& \[

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\
& \mathrm{V}_{\mathrm{S} 1}=10 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 8}=0 \mathrm{~V} / 10 \mathrm{~V} ;
\end{aligned}
$$
\]

$$
\text { Test Circuit } 5
$$

\hline $\mathrm{t}_{\text {OPEN }}$ \& 25 \& 10 \& 25 \& 10 \& ns min \& $$
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\
& \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V} ; \text { Test Circuit } 6
\end{aligned}
$$

\hline $\mathrm{t}_{\mathrm{ON}}(\mathrm{EN}, \overline{\mathrm{WR}})$ \& \[
$$
\begin{aligned}
& 200 \\
& 300
\end{aligned}
$$

\] \& 400 \& \[

$$
\begin{aligned}
& 200 \\
& 300
\end{aligned}
$$

\] \& 400 \& ns typ ns max \& \[

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\
& \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V} ; \text { Test Circuit } 7
\end{aligned}
$$
\]

\hline $\mathrm{t}_{\mathrm{OFF}}(\mathrm{EN}, \overline{\mathrm{RS}})$ \& \[
$$
\begin{aligned}
& 80 \\
& 300
\end{aligned}
$$

\] \& 400 \& \[

$$
\begin{aligned}
& 80 \\
& 300
\end{aligned}
$$

\] \& 400 \& ns typ ns max \& \[

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\
& \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V} ; \text { Test Circuit } 7
\end{aligned}
$$
\]

\hline | t_{w}, Write Pulsewidth |
| :--- |
| $\mathrm{t}_{\text {s }}$, Address, Enable Setup Time t_{H}, Address, Enable Hold Time t_{RS}, Reset Pulsewidth | \& \& \[

$$
\begin{aligned}
& 100 \\
& 100 \\
& 10 \\
& 100
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 100 \\
& 100 \\
& 10 \\
& 100
\end{aligned}
$$

\] \& ns \min ns min ns min ns min \& \[

\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}
\]

\hline Charge Injection \& 4 \& \& 4 \& \& pC typ \& | $\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}$ |
| :--- |
| Test Circuit 10 |

\hline OFF Isolation

Channel-to-Channel Crosstalk \& $$
\begin{aligned}
& -75 \\
& -60 \\
& 85
\end{aligned}
$$ \& \& \[

$$
\begin{aligned}
& -75 \\
& -60 \\
& 85
\end{aligned}
$$

\] \& \& | dB typ |
| :--- |
| dB min |
| dB typ | \& \[

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ; \\
& \mathrm{V}_{\mathrm{S}}=7 \mathrm{~V} \mathrm{rms}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V} ; \text { Test Circuit } 11 \\
& \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ; \\
& \text { Test Circuit } 12
\end{aligned}
$$
\]

\hline $$
\mathrm{C}_{\mathrm{S}}(\mathrm{OFF})
$$

$$
\mathrm{C}_{\mathrm{D}}(\mathrm{OFF})
$$ \& 11 \& \& 11 \& \& pF typ \& \[

$$
\begin{aligned}
& \mathrm{f}=1 \mathrm{MHz} \\
& \mathrm{f}=1 \mathrm{MHz}
\end{aligned}
$$
\]

\hline ADG428 \& 40 \& \& 40 \& \& pF typ \&

\hline $$
\begin{gathered}
\text { ADG429 } \\
\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})
\end{gathered}
$$ \& 20 \& \& 20 \& \& pF typ \& $\mathrm{f}=1 \mathrm{MHz}$

\hline $$
\begin{aligned}
& \text { ADG428 } \\
& \text { ADG429 }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 54 \\
& 34
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 54 \\
& 34
\end{aligned}
$$
\] \& \& pF typ pF typ \&

\hline POWER REQUIREMENTS I_{DD} \& \[
$$
\begin{aligned}
& 20 \\
& 100
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 20 \\
& 100
\end{aligned}
$$

\] \& \& | $\mu \mathrm{A}$ typ |
| :--- |
| $\mu \mathrm{A} \max$ | \& $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$

\hline
\end{tabular}

NOTES

${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; T Version: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

ADG428/ADG429

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

V_{DD} to $\mathrm{V}_{\text {SS }}$	
V_{DD} to GND	
$\mathrm{V}_{\text {SS }}$ to GND	
Analog, Digital Inputs ${ }^{2} \ldots \ldots \ldots . V_{S S}-2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+2 \mathrm{~V}$ or 30 mA , Whichever Occurs First	
Continuous Current, S or D 30 mA	
Peak Current, S or D 100 mA (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle Max)	
Operating Temperature Range	
Industrial (B Version)	C to $+85^{\circ} \mathrm{C}$
Extended (T Version)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Junction Temperature . $+150^{\circ} \mathrm{C}$	
Cerdip Package, Power Dissipation 900 mW	
θ_{JA}, Thermal Impedance	
Lead Temperature, Soldering (10 sec) $+300^{\circ} \mathrm{C}$	
Plastic Package, Power Dissipation 470 mW	
θ_{JA}, Thermal Impedance $115^{\circ} \mathrm{C} / \mathrm{W}$	
Lead Temperature, Soldering (10 sec) $+260^{\circ} \mathrm{C}$	
SOIC Package, Power Dissipation 600 mW	
θ_{JA}, Thermal Impedance $77^{\circ} \mathrm{C} / \mathrm{W}$	
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$+215^{\circ} \mathrm{C}$
PLCC Package, Power Dissipation 800 mW	
θ_{JA}, Thermal Impedance $90^{\circ} \mathrm{C} / \mathrm{W}$	
Lead Temperature, Soldering	
Vapor Phase (60 sec) . $+215^{\circ} \mathrm{C}$	
Infrared (15 sec) . $+220^{\circ} \mathrm{C}$	

NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2}$ Overvoltages at $\mathrm{A}, \mathrm{EN}, \overline{\mathrm{WR}}, \overline{\mathrm{RS}}, \mathrm{S}$ or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

ORDERING GUIDE

Model 1	Temperature Range	Package Options ${ }^{2}$
ADG428BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-18$
ADG428BP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{P}-20 \mathrm{~A}$
ADG428BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-18$
ADG428TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-18$
ADG429BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-18$
ADG429BP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{P}-20 \mathrm{~A}$
ADG429TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-18$

NOTES

${ }^{1}$ For availability of MIL-STD-883, Class B processed parts, contact factory.
${ }^{2} \mathrm{~N}=$ Plastic DIP; $\mathrm{P}=$ Plastic Leaded Chip Carrier (PLCC); $\mathrm{Q}=$ Cerdip;
$\mathrm{R}=$ Small Outline IC (SOIC).

ADG428 PIN CONFIGURATIONS

ADG429 PIN CONFIGURATIONS

PLCC

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG428/ADG429 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADG428/ADG429

TERMINOLOGY

V_{DD}
V_{SS}

GND
R_{ON}
$\Delta \mathrm{R}_{\mathrm{ON}}$
I_{s} (OFF)
I_{D} (OFF)
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
$\mathrm{C}_{\mathrm{s}}(\mathrm{OFF})$
$\mathrm{C}_{\mathrm{D}}(\mathrm{OFF})$
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$
$\mathrm{C}_{\text {IN }}$
t_{ON} (EN)
$\mathrm{t}_{\text {OFF }}(\mathrm{EN})$
$\mathrm{t}_{\text {transition }}$
topen
$\mathrm{V}_{\text {INL }}$
$V_{\text {INH }}$
$\mathrm{I}_{\mathrm{INL}}\left(\mathrm{I}_{\mathrm{INH}}\right)$
Crosstalk

Off Isolation
Charge
Injection
I_{DD}
$\underline{I_{s s}}$ on.
topen
$\mathrm{V}_{\mathrm{INL}}$
$\mathrm{V}_{\mathrm{INH}}$
$\mathrm{I}_{\mathrm{INL}}\left(\mathrm{I}_{\mathrm{INH}}\right)$
Crostalk

Most positive power supply potential.
Most negative power supply potential in dual supplies. In single supply applications, it may be connected to ground.
Ground (0 V) reference.
Ohmic resistance between D and S.
Difference between the R_{ON} of any two channels.
Source leakage current when the switch is off.
Drain leakage current when the switch is off.
Channel leakage current when the switch is
Analog voltage on terminals D, S.
Channel input capacitance for "OFF" condition.
Channel output capacitance for "OFF" condition.
"ON" switch capacitance.
Digital input capacitance.
Delay time between the 50% and 90% points of the digital input and switch "ON" condition.
Delay time between the 50% and 90% points of the digital input and switch "OFF" condition.
Delay time between the 50% and 90% points of the digital inputs and the switch "ON" condition when switching from one address state to another.
"OFF" time measured between 80% points of both switches when switching from one address state to another.
Maximum input voltage for Logic " 0 ."
Minimum input voltage for Logic "1." Input current of the digital input.
A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.
A measure of unwanted signal coupling through an "OFF" channel.
A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Positive supply current.
Negative supply current.

ADG428 Truth Table

A2	A1	A0	EN	$\overline{\mathbf{W R}}$	$\overline{\mathbf{R S}}$	ON SWITCH

Latching

X	X	X	X	5	1	Maintains Previous Switch Condition

Transparent Operation						
X	X	X	0	0	1	NONE
0	0	0	1	0	1	1
0	0	1	1	0	1	2
0	1	0	1	0	1	3
0	1	1	1	0	1	4
1	0	0	1	0	1	5
1	0	1	1	0	1	6
1	1	0	1	0	1	7
1	1	1	1	0	1	8

ADG429 Truth Table

A1	A0	EN	$\overline{\mathbf{W R}}$	$\overline{\mathbf{R S}}$	ON SWITCH PAIR
Latching X X X ς 1 Maintains Previous Switch ConditionReset X X	X	X	0	NONE (Latches Cleared)	

Transparent Operation

X	X	0	0	1	NONE
0	0	1	0	1	1
0	1	1	0	1	2
1	0	1	0	1	3
1	1	1	0	1	4

TIMING DIAGRAMS

Figure 1.
Figure 1 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while $\overline{\mathrm{WR}}$ is held low, the latches are transparent and the switches respond to the address and enable inputs. This input data is latched on the rising edge of $\overline{\mathrm{WR}}$.

Typical Characteristics

Figure 3. $R_{\text {ON }}$ as a Function of $V_{D}\left(V_{S}\right)$: Dual Supply Voltage

Figure 4. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 2.
Figure 2 shows the Reset Pulsewidth, t_{RS}, and the Reset Turnoff Time, $\mathrm{t}_{\mathrm{OFF}},(\overline{\mathrm{RS}})$.

Note: All digital input signals rise and fall times are measured from 10% to 90% of 3 V . $\mathrm{tr}=\mathrm{tf}=20 \mathrm{~ns}$.

Figure 5. $R_{\text {ON }}$ as a Function of $V_{D}\left(V_{S}\right)$: Single Supply Voltage

Figure 6. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 7. Positive Supply Current vs. Switching Frequency

Figure 8. Switching Time vs. $V_{I N}$ (Bipolar Supply)

Figure 9. Switching Time vs. Bipolar Supply

Figure 10. Negative Supply Current vs. Switching Frequency

Figure 11. Switching Time vs. $V_{I N}$ (Single Supply)

Figure 12. Switching Time vs. Single Supply

Figure 13. OFF Isolation vs. Frequency

Figure 14. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 15. Crosstalk vs. Frequency

Figure 16. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

TEST CIRCUITS

Test Circuit 1. On Resistance

Test Circuit 2. IS (OFF)

Test Circuit 3. I_{D} (OFF)

Test Circuit 4. $I_{D}(O N)$

Test Circuit 5. Switching Time of Multiplexer, $t_{\text {TRANSItIon }}$

Test Circuit 6. Break-Before-Make Delay, $t_{\text {OPEN }}$

Test Circuit 7. Enable Delay, $t_{\text {ON }}(E N)$, $t_{\text {OFF }}$ (EN)

Test Circuit 8. Write Turn-On Time, $t_{O N}(\overline{W R})$

Test Circuit 9. Reset Turn-Off Time, $t_{\text {OFF }}(\overline{R S})$

Test Circuit 10. Charge Injection

Test Circuit 11. OFF Isolation

Test Circuit 12. Crosstalk

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

PLCC (P-20A)

Plastic DIP (N-18)

Cerdip (Q-18)

SOIC (R-18)

