

Low Capacitance, Low Charge Injection, ±15 V/12 V iCMOS, Dual SPDT Switch

ADG1236 Data Sheet

FEATURES

1.3 pF off capacitance 3.5 pF on capacitance 1 pC charge injection 33 V supply range 120 Ω on resistance Fully specified at +12 V, $\pm 15 \text{ V}$ No V_L supply required 3 V logic-compatible inputs **Rail-to-rail operation** 16-lead TSSOP and 12-lead LFCSP packages Typical power consumption: <0.03 μW

APPLICATIONS

Automatic test equipment Data acquisition systems Battery-powered systems Sample-and-hold systems Audio/video signal routing **Communication systems**

GENERAL DESCRIPTION

The ADG1236 is a monolithic CMOS device containing two independently selectable SPDT switches. It is designed on an iCMOS® process. iCMOS (industrial CMOS) is a modular manufacturing process combining high voltage complementary metal-oxide semiconductor (CMOS) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage devices has been able to achieve. Unlike analog ICs using conventional CMOS processes, iCMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The ultralow capacitance and charge injection of the device make it an ideal solution for data acquisition and sample-andhold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth makes the device suitable for video signal switching. iCMOS construction ensures ultralow power dissipation, making the device ideally suited for portable and battery-powered instruments.

FUNCTIONAL BLOCK DIAGRAM

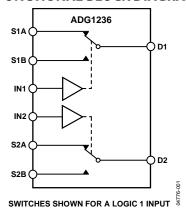


Figure 1.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. Both switches exhibit break-before-make switching action for use in multiplexer applications.

PRODUCT HIGHLIGHTS

- 1.3 pF off capacitance (±15 V supply).
- 1 pC charge injection.
- 3 V logic-compatible digital inputs: $V_{IH} = 2.0 \text{ V}$, $V_{IL} = 0.8 \text{ V}$.
- 4. No V_L logic power supply required.
- 5. Ultralow power dissipation: <0.03 μW.
- 16-lead TSSOP and 12-lead 3 mm × 3 mm LFCSP packages.

Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no

 $responsibility is assumed by Analog \, Devices \, for \, its \, use, \, nor \, for \, any \, infringements \, of \, patents \, or \, other \, infringements \, or \, other \, i$ rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

reatures	. І
Applications	. 1
Functional Block Diagram	. 1
General Description	. 1
Product Highlights	. 1
Revision History	. 2
Specifications	. 3
Dual Supply	. 3
Single Supply	. 5

Absolute Maximum Katings
ESD Caution
Truth Table for Switches
Pin Configurations and Function Descriptions
Terminology
Typical Performance Characteristics
Test Circuits
Outline Dimensions
Ordering Guide

REVISION HISTORY

3/16—Rev. 0 to Rev. A

Changes to Figure 2 and Figure 3	
Updated Outline Dimensions	14
Changes to Ordering Guide	1

9/05—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Y Version ¹					
Parameters	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments ¹
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	V	
On Resistance (RoN)	120			Ω typ	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}; Figure 20$
	190	230	260	Ωmax	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On Resistance Match Between Channels (ΔR_{ON})	3.5			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$
	6	10	12	Ω max	
On Resistance Flatness (RFLAT(ON))	20			Ω typ	$V_S = -5 \text{ V}, 0 \text{ V}, +5 \text{ V}; I_S = -1 \text{ mA}$
	57	72	79	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.02			nA typ	$V_S = \pm 10 \text{ V}, V_S = \mp 10 \text{ V}; \text{ Figure 21}$
	±0.1	±0.6	±1	nA max	
Drain Off Leakage, I _D (Off)	±0.02			nA typ	$V_{s} = \pm 10 \text{ V}, V_{s} = \mp 10 \text{ V}; Figure 21$
-	±0.1	±0.6	±1	nA max	
Channel On Leakage, ID, Is (On)	±0.02	_0.0		nA typ	$V_S = V_D = \pm 10 \text{ V}$; Figure 22
eae. e <u></u>	±0.2	±0.6	±1	nA max	<u></u>
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
,			±0.1	μA max	
Digital Input Capacitance, CIN	2			pF typ	
DYNAMIC CHARACTERISTICS ²				1 /	
Transition Time, trans Aoff Bon	125			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	150		200	ns max	V _s = 10 V; Figure 23
Transition Time, trans Boff Aon	70			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	90		115	ns max	$V_S = 10 \text{ V}$; Figure 23
Break-Before-Make Time Delay, t _D	25			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
·			10	ns min	$V_{S1} = V_{S2} = 10 \text{ V}$; Figure 24
Charge Injection	-1			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; Figure 25}$
Off Isolation	80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 26
Channel-to-Channel Crosstalk	85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 27
Total Harmonic Distortion + Noise	0.15			% typ	R_L = 10 kΩ, 5 V rms, f = 20 Hz to 20 kHz
–3 dB Bandwidth	1000			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 28
C _s (Off)	1.3			pF typ	$f = 1 \text{ MHz}; V_S = 0 \text{ V}$
	1.6			pF max	$f = 1 \text{ MHz}$; $V_S = 0 \text{ V}$
C_D , C_S (On)	3.5			pF typ	$f = 1 \text{ MHz; } V_S = 0 \text{ V}$
	4.3			pF max	$f = 1 \text{ MHz}$; $V_S = 0 \text{ V}$

		Y Version ¹				
Parameters	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments ¹	
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$	
I _{DD}	0.001			μA typ	Digital inputs = 0 V or V _{DD}	
			1.0	μA max		
I_{DD}	170			μA typ	Digital inputs = 5 V	
			230	μA max		
Iss	0.001			μA typ	Digital inputs = 0 V or V _{DD}	
			1.0	μA max		
Iss	0.001			μA typ	Digital inputs = 5 V	
			1.0	μA max		

 $^{^1}$ Temperature range for Y version is -40°C to $+125^\circ\text{C}$. 2 Guaranteed by design; not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Y Version ¹						
Parameters	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments	
ANALOG SWITCH						
Analog Signal Range			$0V$ to V_{DD}	V		
On Resistance (RoN)	300			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -1 \text{ mA; Figure } 20$	
	475	567	625	Ω max	$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$	
On Resistance Match Between Channels (ΔR_{ON})	4.5			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -1 \text{ mA}$	
	16	26	27	Ω max		
On Resistance Flatness (RFLAT(ON))	60			Ωtyp	$V_S = 3 V, 6 V, 9 V, I_S = -1 mA$	
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}$	
Source Off Leakage, Is (Off)	±0.02			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; Figure 21$	
	±0.1	±0.6	±1	nA max		
Drain Off Leakage, I _D (Off)	±0.02			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; Figure 21$	
	±0.1	±0.6	±1	nA max		
Channel On Leakage, ID, Is (On)	±0.02			nA typ	$V_S = V_D = 1 \text{ V or } 10 \text{ V, Figure } 22$	
	±0.2	±0.6	±1	nA max		
DIGITAL INPUTS						
Input High Voltage, V _{INH}			2.0	V min		
Input Low Voltage, V _{INL}			0.8	V max		
Input Current, I _{INL} or I _{INH}	0.001			μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
·			±0.1	μA max		
Digital Input Capacitance, C _{IN}	3			pF typ		
DYNAMIC CHARACTERISTICS ²						
Transition Time, trrans Boff Aon	105			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$	
	140		175	ns max	V _s = 8 V; Figure 23	
Transition Time, trrans Aoff Bon	155			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$	
	190		255	ns max	V _s = 8 V; Figure 23	
Break-Before-Make Time Delay, t _D	50			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$	
·			10	ns min	$V_{S1} = V_{S2} = 8 \text{ V}$; Figure 24	
Charge Injection	-0.8			pC typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; Figure 25}$	
Off Isolation	75			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 26;	
Channel-to-Channel Crosstalk	85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 27	
–3 dB Bandwidth	800			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 28	
C _s (Off)	1.6			pF typ	$f = 1 \text{ MHz}; V_S = 6 \text{ V}$	
	1.9			pF max	$f = 1 \text{ MHz}; V_s = 6 \text{ V}$	
C_D , C_S (On)	4			pF typ	$f = 1 \text{ MHz}; V_S = 6 \text{ V}$	
	4.9			pF max	$f = 1 \text{ MHz}; V_S = 6 \text{ V}$	
POWER REQUIREMENTS					V _{DD} = 13.2 V	
I _{DD}	0.001			μA typ	Digital inputs = 0 V or V _{DD}	
			1.0	μA max		
I _{DD}	170			μA typ	Digital inputs = 5 V	
			230	μA max		

 $^{^1}$ Temperature range for Y version is -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

1 abic 5.	
Parameter	Rating
V _{DD} to V _{SS}	35 V
V_{DD} to GND	−0.3 V to +25 V
V _{SS} to GND	+0.3 V to −25 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V or}$ 30 mA, whichever occurs first
Digital Inputs ¹	GND $-$ 0.3 V to V_{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D	100 mA (pulsed at 1 ms, 10% duty cycle max)
Continuous Current per Channel, S or D	25 mA
Operating Temperature Range	
Automotive (Y Version)	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
16-Lead TSSOP, θ _{JA} Thermal Impedance	112°C/W
12-Lead LFCSP, θ _{JA} Thermal Impedance	80°C/W
Reflow Soldering Peak Temperature, Pb Free	260°C

 $^{^{\}rm 1}$ Over voltages at IN, S, or D are clamped by internal diodes. Current must be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TRUTH TABLE FOR SWITCHES

Table 4.

IN	Switch A	Switch B
0	Off	On
1	On	Off

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

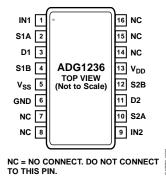
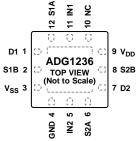



Figure 2. TSSOP Pin Configuration

- NOTES

 1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.

 2. THE EXPOSED PAD MUST BE TIED
- TO SUBSTRATE, V_{SS} .

Figure 3. LFCSP Pin Configuration

Table 5. Pin Function Descriptions

Pin No.			
TSSOP LFCSP Mnemonic		Mnemonic	Description
1	11	IN1	Logic Control Input.
2	12	S1A	Source Terminal. Can be an input or output.
3	1	D1	Drain Terminal. Can be an input or output.
4	2	S1B	Source Terminal. Can be an input or output.
5	3	V_{ss}	Most Negative Power Supply Potential.
6	4	GND	Ground (0 V) Reference.
7, 8, 14 to 16	10	NC	No Connect.
9	5	IN2	Logic Control Input.
10	6	S2A	Source Terminal. Can be an input or output.
11	7	D2	Drain Terminal. Can be an input or output.
12	8	S2B	Source Terminal. Can be an input or output.
13	9	V_{DD}	Most Positive Power Supply Potential.

TERMINOLOGY

 I_{DD}

The positive supply current.

 I_{ss}

The negative supply current.

 $V_D(V_S)$

The analog voltage on Terminals D and S.

 R_{ON}

The ohmic resistance between D and S.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

Is (Off)

The source leakage current with the switch off.

I_D (Off)

The drain leakage current with the switch off.

 I_D , I_S (On)

The channel leakage current with the switch on.

 V_{INL}

The maximum input voltage for Logic 0.

 V_{INH}

The minimum input voltage for Logic 1.

IINL (IINH)

The input current of the digital input.

Cs (Off)

The off switch source capacitance, measured with reference to ground.

C_D (Off)

The off switch drain capacitance, measured with reference to ground.

C_D , C_S (On)

The on switch capacitance, measured with reference to ground.

 C_{IN}

The digital input capacitance.

tTRANS

The delay time between the 50% and 90% points of the digital input and switch on condition when switching from one address state to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

THD + N

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

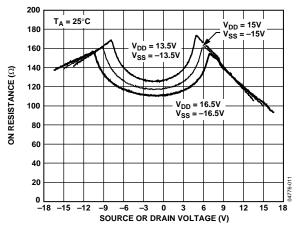


Figure 4. On Resistance as a Function of V_D (V_S) for Dual Supply

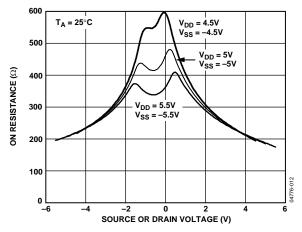


Figure 5. On Resistance as a Function of V_D (V_S) for Dual Supply

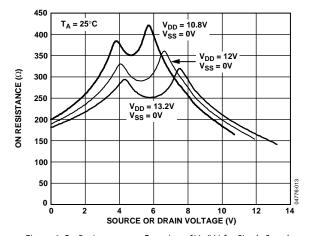


Figure 6. On Resistance as a Function of $V_D\left(V_S\right)$ for Single Supply

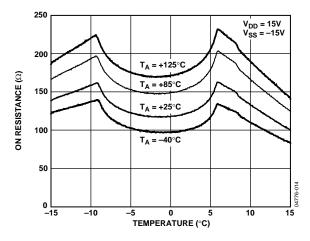


Figure 7. On Resistance as a Function of V_D (Vs) for Different Temperatures, Dual Supply

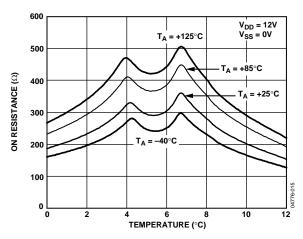


Figure 8. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

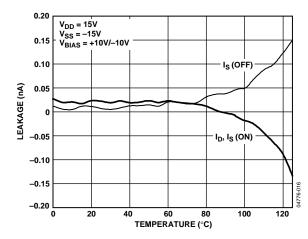


Figure 9. Leakage Currents as a Function of Temperature, Dual Supply

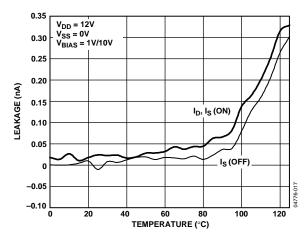


Figure 10. Leakage Currents as a Function of Temperature, Single Supply

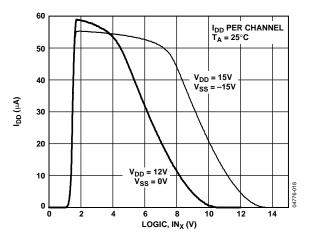


Figure 11. IDD vs. Logic Level

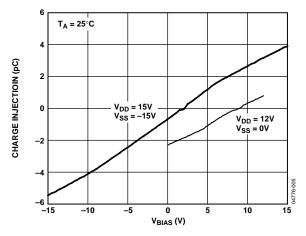


Figure 12. Charge Injection vs. Source Voltage

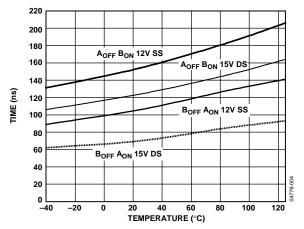


Figure 13. ttransition Times vs. Temperature

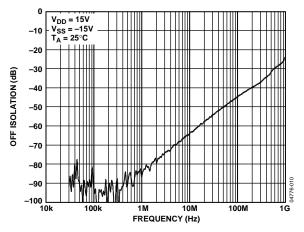


Figure 14. Off Isolation vs. Frequency

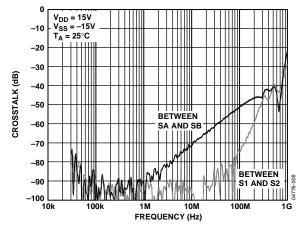


Figure 15. Crosstalk vs. Frequency

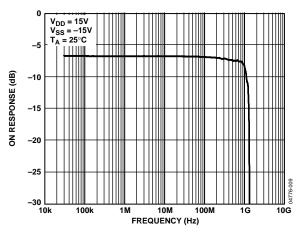


Figure 16. On Response vs. Frequency

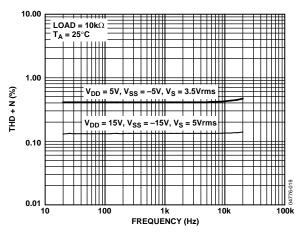


Figure 17. THD + N vs. Frequency

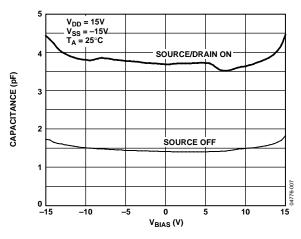


Figure 18. Capacitance vs. Source Voltage for Dual Supply

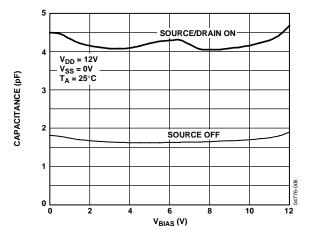


Figure 19. Capacitance vs. Source Voltage for Single Supply

TEST CIRCUITS

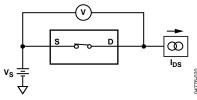


Figure 20. Test Circuit 1—On Resistance

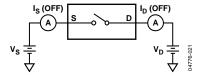


Figure 21. Test Circuit 2—Off Resistance

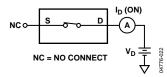


Figure 22. Test Circuit 3—On Leakage

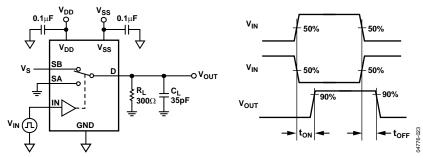


Figure 23. Test Circuit 4—Switching Times

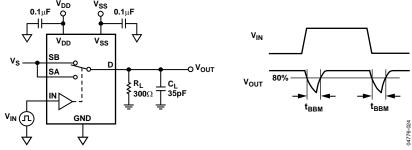


Figure 24. Test Circuit 5—Break-Before-Make Time Delay

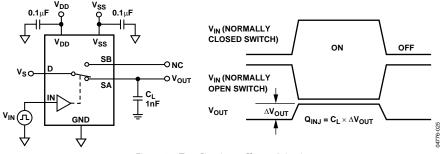


Figure 25. Test Circuit 6—Charge Injection

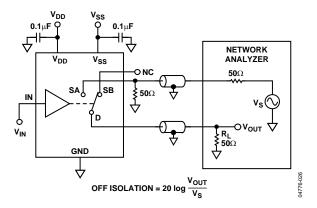


Figure 26. Test Circuit 7—Off Isolation

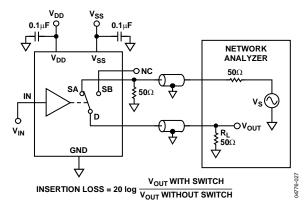
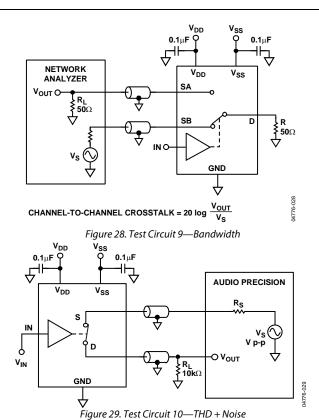
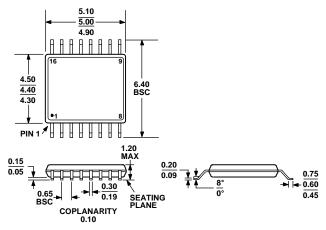




Figure 27. Test Circuit 8—Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153AB

Figure 30. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)

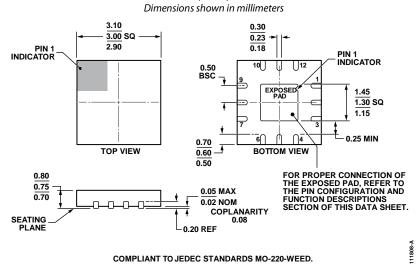


Figure 31. 12-Lead Lead Frame Chip Scale Package [LFCSP] 3 mm × 3 mm Body and 0.75 mm Package Height (CP-12-4) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG1236YRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1236YRUZ-REEL	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1236YRUZ-REEL7	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1236YCPZ-500RL7	−40°C to +125°C	12-Lead Lead Frame Chip Scale Package [LFCSP]	CP-12-4
ADG1236YCPZ-REEL7	-40°C to +125°C	12-Lead Lead Frame Chip Scale Package [LFCSP]	CP-12-4

¹ Z = RoHS Compliant Part.

NOTES

NOTES