

Enhanced Product

FEATURES

2 mA full-scale current ± 20%, with V_{REF} = ±10 V 0.9 µs settling time to ±0.1% 12 MHz multiplying bandwidth Midscale glitch of -1 nV-sec Midscale or zero-scale reset 4 separate, 4-quadrant multiplying reference inputs SPI-compatible, 3-wire interface Double-buffered registers enable Simultaneous multichannel change Internal power-on reset Compact 28-lead SSOP

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC) Military temperature range (-55°C to +125°C) Controlled manufacturing baseline 1 assembly/test site 1 fabrication site Enhanced product change notification Qualification data available on request

APPLICATIONS

Automatic test equipment Instrumentation Digitally controlled calibration

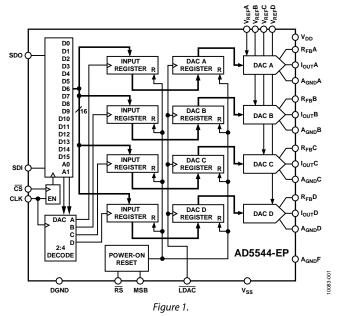
GENERAL DESCRIPTION

The AD5544-EP quad, 16-bit, current output, digital-to-analog converter (DAC) is designed to operate from a 2.7 V to 5.5 V supply range.

The applied external reference input voltage ($V_{REF}x$) determines the full-scale output current. Integrated feedback resistors (R_{FB}) provide temperature-tracking, full-scale voltage outputs when combined with an external I-to-V precision amplifier.

A double-buffered serial data interface offers high speed, 3-wire, SPI- and microcontroller-compatible inputs using serial data in (SDI), a chip select ($\overline{\text{CS}}$), and clock (CLK) signals. In addition, a serial data out pin (SDO) allows for daisy chaining when multiple

packages are used. A common, level-sensitive, load DAC strobe (LDAC) input allows the simultaneous update of all DAC outputs from previously loaded input registers. Additionally, an internal power-on reset forces the output voltage to 0 at system turn-on. The MSB pin allows system reset assertion ($\overline{\text{RS}}$) to force all registers to zero code when MSB = 0 or to half-scale code when MSB = 1. The AD5544-EP is packaged in the compact 28-lead SSOP.


Additional application and technical information can be found in the AD5544 data sheet.

Quad, Current-Output,

Serial-Input 16-Bit DAC

FUNCTIONAL BLOCK DIAGRAM

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1
Enhanced Product Features1
Applications1
Functional Block Diagram1
General Description1
Revision History
Specifications
Timing Diagrams4

Absolute Maximum Ratings	5
ESD Caution	5
Pin Configuration and Function Descriptions	6
Typical Performance Characteristics	8
Outline Dimensions	10
Ordering Guide	10

REVISION HISTORY

4/12—Revision 0: Initial Version

SPECIFICATIONS

 $V_{DD} = 2.7 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $I_{OUT}x = virtual GND$, $A_{GND}x = 0 \text{ V}$, $V_{REF}A = V_{REF}B = V_{REF}C = V_{REF}D = 10 \text{ V}$, $T_A = full operating temperature range of -55°C to +125°C, unless otherwise noted.$

Table 1.

Parameter	Symbol	Test Condition/Comments	Min	Тур	Max	Unit
STATIC PERFORMANCE ¹						
Resolution	Ν	$1 \text{ LSB} = V_{\text{REF}} x/2^{16} = 153 \mu \text{V}$ when $V_{\text{REF}} = 10 \text{ V}$			16	Bits
Relative Accuracy	INL				±1.5	LSB
Differential Nonlinearity	DNL				±1.5	LSB
Output Leakage Current	l _{out} x	Data = $0x0000$, $T_A = 25^{\circ}C$			10	nA
	001	Data = $0x0000, T_A = 85^{\circ}C$			20	nA
Full-Scale Gain Error G _{FSE}		Data = 0xFFFF		±0.75	±4	mV
Full-Scale Tempco ²	TCV _{FS}			1		ppm/°
Feedback Resistor	R _{FB} x	$V_{DD} = 5 V$	4	6	8	kΩ
REFERENCE INPUT						
V _{REF} x Range	$V_{REF}x$		-15		+15	v
Input Resistance	R _{REF} x		4	6	8	kΩ
Input Resistance Match	R _{REF} x	Channel-to-channel		0.35		%
Input Capacitance ²	C _{REF} X			5		рF
ANALOG OUTPUT						
Output Current	I _{оυт} х	Data = 0xFFFF	1.25		2.5	mA
Output Capacitance ²	C _{OUT} x	Code dependent		35		рF
LOGIC INPUT AND OUTPUT	001					
Logic Input Low Voltage	V _{IL}				0.8	v
Logic Input High Voltage	V _{IH}		2.4			v
Input Leakage Current	I _{IL}				1	μA
Input Capacitance ²	C _{IL}				10	pF
Logic Output Low Voltage V_{OL}		$I_{01} = 1.6 \text{ mA}$			0.4	v
Logic Output High Voltage V _{OH}		$I_{OH} = 100 \mu A$	4			v
INTERFACE TIMING ^{2, 3}	UII					
Clock Width High	t _{cH}		25			ns
Clock Width Low	t _{CL}		25			ns
CS to Clock Setup	t _{CSS}		0			ns
Clock to \overline{CS} Hold	t _{CSH}		25			ns
Clock to SDO Propagation	t _{PD}		2		20	ns
Delay	C PD		-		20	
Load DAC Pulse Width	t _{LDAC}		25			ns
Data Setup	t _{DS}		20			ns
Data Hold	t _{DH}		20			ns
Load Setup	t _{LDS}		5			ns
Load Hold	t _{LDH}		25			ns
SUPPLY CHARACTERISTICS			-			
Power Supply Range	V _{DD RANGE}		2.7		5.5	v
Positive Supply Current	DD RANGE	Logic inputs = $0 V$			5	μA
Negative Supply Current	I _{SS}	Logic inputs = 0 V , $V_{ss} = -5 \text{ V}$		0.001	9	μΑ
Power Dissipation	P _{DISS}	Logic inputs = $0V$		0.001	1.25	mW
Power Supply Sensitivity PSS		$\Delta V_{\rm DD} = \pm 5\%$			0.006	%/%

Enhanced Product

Parameter	Symbol	Test Condition/Comments	Min	Тур	Max	Unit
AC CHARACTERISTICS ⁴						
Output Voltage Settling Time	t _s	To $\pm 0.1\%$ of full scale, data = 0x0000 to 0xFFFF to 0x0000		0.9		μs
Reference Multiplying BW – 3 dB Bandwidth (BW)		$V_{REF}x = 5 V p-p$, data = 0xFFFF, $C_{FB} = 2.0 pF$,		12		MHz
DAC Glitch Impulse Q		V _{REF} x = 8 V, data = 0x0000 to 0x8000 to 0x0000		-1		nV-sec
Feedthrough Error V _{OUT} x/V _{REF} x		Data = 0x0000, V _{REF} x = 100 mV rms, f = 100 kHz		-65		dB
Crosstalk Error V _{OUT} A/V _{REF} B		Data = 0x0000, $V_{REF}B$ = 100 mV rms, adjacent channel, f = 100 kHz		-90		dB
Digital Feedthrough Q		$\overline{CS} = 1$, $f_{CLK} = 1$ MHz		0.6		nV-sec
Total Harmonic Distortion	THD	$V_{REF}x = 5 V p-p$, data = 0xFFFF, f = 1 kHz		-98		dB
Output Spot Noise Voltage e _N		f = 1 kHz, BW = 1 Hz		7		nV/√Hz

¹ All static performance tests (except I_{OUT}x) are performed in a closed-loop system using an external precision OP177 I-to-V converter amplifier. The AD5544 R_{FB} terminal is tied to the amplifier output. Typical values represent average readings measured at 25°C.

² These parameters are guaranteed by design and not subject to production testing. ³ All input control signals are specified with $t_R = t_F = 2.5$ ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V. ⁴ All ac characteristic tests are performed in a closed-loop system using an AD8038 I-to-V converter amplifier.

TIMING DIAGRAMS

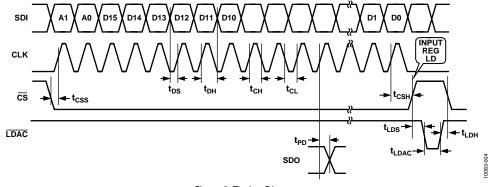
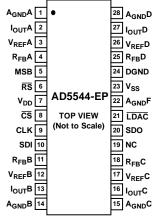


Figure 2. Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating						
V _{DD} to GND	–0.3 V, +8 V						
V _{ss} to GND	+0.3 V, -7 V						
V _{REF} x to GND	–18 V, +18 V						
Logic Input and Output to GND	–0.3 V, +8 V						
V(I _{OUT} x) to GND	-0.3 V, V _{DD} + 0.3 V						
A _{GND} x to DGND	–0.3 V, +0.3 V						
Input Current to Any Pin Except Supplies	±50 mA						
Package Power Dissipation	$(T_J max - T_A)/\theta_{JA}$						
Thermal Resistance	θ_{JA}						
28-Lead SSOP	100°C/W						
32-Lead LFCSP	32.5°C/W						
Maximum Junction Temperature (T _J Max)	150°C						
Operating Temperature Range, Enhanced Product (EP Version)	–55°C to +125°C						
Storage Temperature Range	–65°C to +150°C						
Lead Temperature							
Vapor Phase, 60 Sec	215°C						
Infrared, 15 Sec	220°C						


Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.

S

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	A _{GND} A	DAC A Analog Ground.
2	I _{OUT} A	DAC A Current Output.
3	V _{REF} A	DAC A Reference Voltage Input Terminal. Establishes DAC A full-scale output voltage. This pin can be tied to the V _{DD} pin.
4	R _{FB} A	Establish the voltage output for DAC A by connecting to an external amplifier output.
5	MSB	MSB Pin. Set pin during a reset pulse (\overline{RS}) or at system power-on if tied to ground or V _{DD} .
6	RS	Reset Pin, Active Low Input. Input registers and DAC registers are set to all 0s or half-scale code, determined by the voltage on the MSB pin. Register data = 0x0000 when MSB = 0.
7	V _{DD}	Positive Power Supply Input. Specified range of operation: 5 V \pm 10%.
8	<u>cs</u>	Chip Select, Active Low Input. Disables shift register loading when high. Transfers serial register data to the input register when CS/LDAC returns high. Does not affect LDAC operation.
9	CLK	Clock Input. Positive edge clocks data into the shift register.
10	SDI	Serial Data Input. Input data loads directly into the shift register.
11	R _{FB} B	Establish the voltage output for DAC B by connecting to an external amplifier output.
12	V _{REF} B	DAC B Reference Voltage Input Terminal. Establishes DAC B full-scale output voltage. This pin can be tied to the V _{DD} pin.
13	I _{OUT} B	DAC B Current Output.
14	A _{GND} B	DAC B Analog Ground.
15	A _{GND} C	DAC C Analog Ground.
16	Ι _{ουτ} Ο	DAC C Current Output.
17	V _{REF} C	DAC C Reference Voltage Input Terminal. Establishes DAC C full-scale output voltage. This pin can be tied to the V _{DD} pin.
18	R _{FB} C	Establish the voltage output for DAC C by connecting to an external amplifier output.
19	NC	No Connect. Do not connect to this pin.
20	SDO	Serial Data Output. Input data loads directly into the shift register. Data appears at SDO at 19 clock pulses for the AD5544-EP after input at the SDI pin.
21	LDAC	Load DAC Register Strobe, Level Sensitive Active Low. Transfers all input register data to DAC registers. Asynchronous active low input.
22	A _{GND} F	High Current Analog Force Ground.
23	V _{ss}	Negative Bias Power Supply Input. Specified range of operation: –5.5 V to +0.3 V.
24	DGND	Digital Ground Pin.
25	R _{FB} D	Establish the voltage output for DAC D by connecting to an external amplifier output.

Figure 3. Pin Configuration

Enhanced Product

_

Pin No.	Mnemonic	Description
26	V _{REF} D	DAC D Reference Voltage Input Terminal. Establishes DAC D full-scale output voltage. This pin can be tied to the
		V _{DD} pin.
27	I _{OUT} D	DAC D Current Output.
28	A _{GND} D	DAC D Analog Ground.

TYPICAL PERFORMANCE CHARACTERISTICS

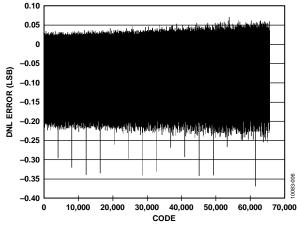
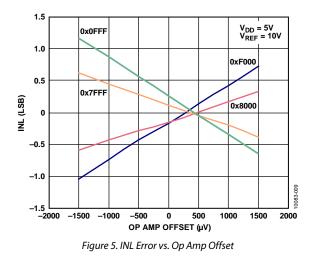
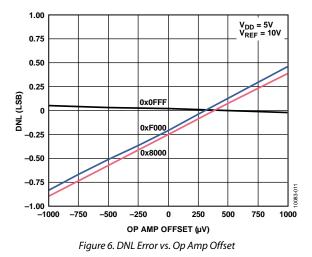




Figure 4. DNL Error vs. Code, $T_A = 25^{\circ}C$

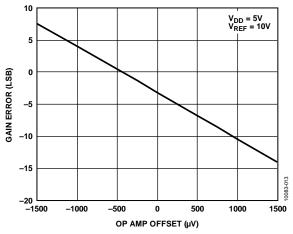
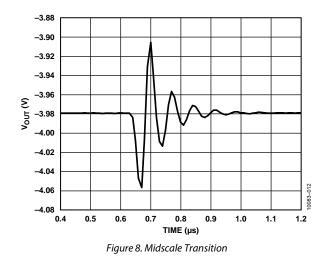



Figure 7. Gain Error vs. Op Amp Offset

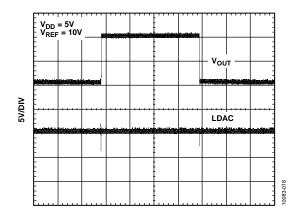


Figure 9. Large Signal Settling Time

Enhanced Product

AD5544-EP

10083-020

0083-017

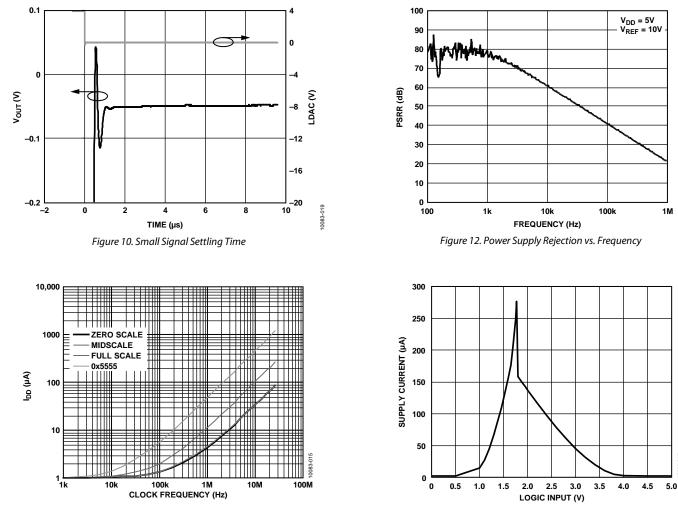
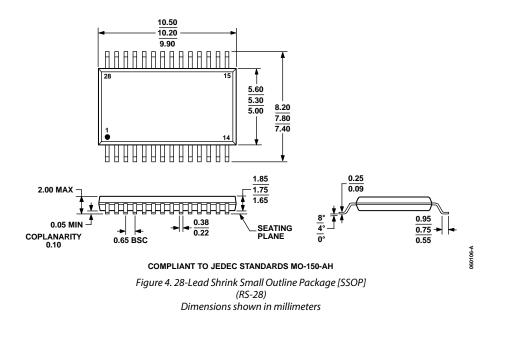



Figure 11. Power Supply Current vs. Clock Frequency

Figure 13. Power Supply Current vs. Logic Input Voltage

OUTLINE DIMENSIONS

ORDERING GUIDE

Model	Resolution (Bits)	INL LSB	DNL LSB	Temperature Range	Package Description	Package Option
AD5544SRS-EP	16	±1.5	±1.5	-55°C to +125°C	28-Lead Shrink Small Outline Package [SSOP]	RS-28

NOTES

NOTES

©2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D10083-0-4/12(0)

www.analog.com

Rev. 0 | Page 12 of 12