FEATURES

6.5Ω (maximum) on resistance

0.8Ω (maximum) on-resistance flatness
2.7 V to 5.5 V single supply
$\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ dual supply
Rail-to-rail operation
8-lead SOT-23, 8-lead MSOP
Typical power consumption (<0.1 $\mu \mathrm{W}$)
TTL-/CMOS-compatible inputs

APPLICATIONS

Automatic test equipment
Power routing
Communication systems
Data acquisition systems
Sample-and-hold systems
Avionics
Relay replacement
Battery-powered systems

GENERAL DESCRIPTION

The ADG619/ADG620 are monolithic, CMOS single-pole double-throw (SPDT) switches. Each switch conducts equally well in both directions when the device is on.

The ADG619/ADG620 offer a low on resistance of 4Ω, which is matched to within 0.7Ω between channels. These switches also provide low power dissipation, yet result in high switching speeds. The ADG619 exhibits break-before-make switching action, thus preventing momentary shorting when switching channels. The ADG620 exhibits make-before-break action.

The ADG619/ADG620 are available in an 8-lead SOT-23 and an 8-lead MSOP.

FUNCTIONAL BLOCK DIAGRAM

1. SWITCHES SHOWN FOR A LOGIC 1 INPUT.
$\stackrel{\rightharpoonup}{\circ}$
$\stackrel{\rightharpoonup}{0}$
ث̈0
On
Figure 1.

PRODUCT HIGHLIGHTS

1. Low on resistance (Ron): 4Ω typical.
2. Dual $\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ or single 2.7 V to 5.5 V supplies.
3. Low power dissipation.
4. Fast $\mathrm{t}_{\mathrm{on}} / \mathrm{t}_{\text {off }}$.
5. Tiny, 8-lead SOT-23 and 8-lead MSOP.

Table 1. Truth Table for the ADG619/ADG620

IN	Switch S1	Switch S2
0	On	Off
1	Off	On

[^0]
ADG619/ADG620

TABLE OF CONTENTS

Features1Applications. 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 3
Single Supply 5
REVISION HISTORY
3/07—Rev. B to Rev. C
Changes to Specifications 3
1/06-Rev. A to Rev. B
Changes to Ron Values in Table 2 2
Updated Outline Dimensions 13
Changes to Ordering Guide 13
6/03-Rev. 0 to Rev. A.
Edits to Specifications 2
Changes to Ordering Guide 4
Updated Outline Dimensions 8
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configurations and Function Descriptions 7
Typical Performance Characteristics 8
Terminology 10
Test Circuits 11
Outline Dimensions 13
Ordering Guide 14

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$. All specifications $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	B Version ${ }^{1}$		Unit	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
ANALOG SWITCH				
Analog Signal Range		$\mathrm{V}_{S S}$ to $\mathrm{V}_{\text {DD }}$	V	$\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{S S}=-4.5 \mathrm{~V}$
On Resistance (Ron)	4		Ω typ	$\mathrm{V}_{\mathrm{s}}= \pm 4.5 \mathrm{~V}$, los $=-10 \mathrm{~mA}$; see Figure 15
	6.5	8.5	Ω max	
Ron Match Between Channels (Δ Ron)	0.7		Ω typ	$\mathrm{V}_{\mathrm{s}}= \pm 4.5 \mathrm{~V}, \mathrm{los}=-10 \mathrm{~mA}$
	1.1	1.35	Ω max	
On-Resistance Flatness (Rflat (on)	0.7	0.8	$\Omega \operatorname{typ}$	$\mathrm{V}_{\mathrm{s}}= \pm 3.3 \mathrm{~V}, \mathrm{los}=-10 \mathrm{~mA}$
	1.35	1.4	Ω max	
LEAKAGE CURRENTS Source Off Leakage, Is (Off)	± 0.01			$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5.5 \mathrm{~V}$
			$n A$ typ	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$; see Figure 16
Channel On Leakage, ld, Is (On)	± 0.25	± 1	nA max	
	± 0.01		nA typ	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}$; see Figure 17
	± 0.25	± 1	nA max	
DIGITAL INPUTS	0.005			$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
Input High Voltage, $\mathrm{V}_{\text {INH }}$		2.4	\checkmark min	
Input Low Voltage, $\mathrm{V}_{\text {INL }}$		0.8	V max	
Input Current, lins or linh		± 0.1	$\mu \mathrm{A}$ typ	
			$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{ClN}_{\text {IN }}$	2		pF typ	
DYNAMIC CHARACTERISTICS ${ }^{2}$			ns typ	
ADG619				
ton	80	155		$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	120		ns max	$\mathrm{V}_{5}=3.3 \mathrm{~V}$; see Figure 18
toff	45		ns typ	$\mathrm{RL}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	75	90	ns max	$\mathrm{V}_{5}=3.3 \mathrm{~V}$; see Figure 18
Break-Before-Make Time Delay, t $_{\text {BBM }}$	40	10	ns typ ns min	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
				$\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=3.3 \mathrm{~V}$; see Figure 19
ADG620				
ton	40		ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	65	85	ns max	$\mathrm{V}_{\mathrm{s}}=3.3 \mathrm{~V}$; see Figure 18
toff ${ }^{\text {Make-Before-Break Time Delay, } \mathrm{t}_{\text {MBB }}}$	200		ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	330	400	ns max	$\mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V}$; see Figure 18
	160	10	ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			ns min	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$; see Figure 20
Charge Injection	110		pC typ	$\mathrm{V}_{s}=0 \mathrm{~V}, \mathrm{R}_{s}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 21
Off Isolation	-67		dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 22
Channel-to-Channel Crosstalk	-67		dB typ	$\mathrm{R}_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 23
Bandwidth -3 dB	190		MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$; see Figure 24
C_{5} (Off)	25		pF typ	$\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{S}(\mathrm{On})$	95		pF typ	$\mathrm{f}=1 \mathrm{MHz}$

ADG619/ADG620

Parameter	B Version ${ }^{1}$		Unit	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
POWER REQUIREMENTS				$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5.5 \mathrm{~V}$
Ido	0.001		$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or 5.5 V
		1.0	$\mu \mathrm{A}$ max	
Iss	0.001		$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or 5.5 V
		1.0	$\mu \mathrm{A}$ max	

${ }^{1}$ Temperature range for B version is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}$ ss $=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$. All specifications $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

[^1]
ADG619/ADG620

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	13 V
$V_{\text {DD }}$ to GND	-0.3 V to +6.5 V
$V_{\text {ss }}$ to GND	+0.3 V to -6.5 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs ${ }^{1}$	-0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$ or 30 mA (whichever occurs first)
Peak Current, S or D	100 mA (pulsed at 1 ms , 10\% duty cycle maximum)
Continuous Current, S or D	50 mA
Operating Temperature Range Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
MSOP	
θ_{JA} Thermal Impedance	$206^{\circ} \mathrm{C} / \mathrm{W}$
θ_{jc} Thermal Impedance	$44^{\circ} \mathrm{C} / \mathrm{W}$
SOT-23	
θ_{JA} Thermal Impedance	$229.6^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {ıc }}$ Thermal Impedance	$91.99^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature	$220^{\circ} \mathrm{C}$

[^2]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at a time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	D	Drain Terminal. Can be an input or output.
2	S1	Source Terminal. Can be an input or output.
3	GND	Ground (0 V) Reference.
4	VDD	Most Positive Power Supply.
5	NC	No Connect. Not internally connected.
6	IN	Logic Control Input.
7	Voss	Mogative Power Supply. This pin is only used in dual-supply applications and should be tied to ground in single-supply applications.
8	S2	Source Terminal. Can be an input or output.

ADG619/ADG620

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance vs. V_{D}, V_{S} (Dual Supply)

Figure 5. On Resistance vs. VD, Vs (Single Supply)

Figure 6. On Resistance vs. V_{D}, V_{s} for Different Temperatures (Dual Supply)

Figure 7. On Resistance vs. V_{D}, V_{S} for Different Temperatures (Single Supply)

Figure 8. Leakage Currents vs. Temperature (Dual Supply)

Figure 9. Leakage Currents vs. Temperature (Single Supply)

ADG619/ADG620

Figure 10. Charge Injection vs. Source Voltage

Figure 11. ton/toff Times vs. Temperatures

Figure 12. Off Isolation vs. Frequency

Figure 13. Crosstalk vs. Frequency

Figure 14. On Response vs. Frequency

ADG619/ADG620

TERMINOLOGY

I_{DD}
Positive supply current.
Iss
Negative supply current.
Ron
Ohmic resistance between D and S terminals.

Δ Ron

On resistance match between any two channels.
$\mathrm{R}_{\text {flat (on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
I_{s} (Off)
Source leakage current with the switch off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{On})$

Channel leakage current with the switch on.
V_{D}, V_{s}
Analog voltage on Terminal D and Terminal S.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
Inth, $\mathbf{I}_{\text {INH }}$
Input current of the digital input.
Cs (Off)
Off switch source capacitance.

$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)

On switch capacitance.
ton
Delay between applying the digital control input and the output switching on.
toff
Delay between applying the digital control input and the output switching off.
$\mathbf{t}_{\text {MBB }}$
On time is measured between the 80% points of both switches, when switching from one address state to another.
t $_{\text {bвм }}$
Off time or on time is measured between the 90% points of both switches, when switching from one address state to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

A measure of unwanted signal coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Bandwidth

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

TEST CIRCUITS

Figure 15. On Resistance

Figure 16. Off Leakage

Figure 17. On Leakage

Figure 18. Switching Times

Figure 20. Make-Before-Break Time Delay, $t_{\text {MBB }}$ (ADG620 Only)

Figure 21. Charge Injection

ADG619/ADG620

Figure 22. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{v_{\text {OUT }}}{v_{S}}$ 皆
Figure 23. Channel-to-Channel Crosstalk

$$
\text { INSERTION LOSS }=20 \log \frac{v_{\text {OUT }} \text { WITH SWITCH }}{v_{\text {S }} \text { WITHOUT SWITCH }}
$$

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 25. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

Figure 26. 8-Lead Small Outline Transistor Package [SOT-23] (RJ-8)
Dimensions shown in millimeters

ADG619/ADG620

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding ${ }^{1}$
ADG619BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package (MSOP)	RM-8	SVB
ADG619BRM-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package (MSOP)	RM-8	SVB
ADG619BRM-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package (MSOP)	RM-8	SVB
ADG619BRMZ 2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package (MSOP)	RM-8	SCC
ADG619BRMZ-REEL ${ }^{\circ}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package (MSOP)	RM-8	SCC
ADG619BRMZ-REEL7 ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package (MSOP)	RM-8	SCC
ADG619BRT-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SVB
ADG619BRT-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SVB
ADG619BRT-500RL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SVB
ADG619BRTZ-REEL ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SCC
ADG619BRTZ-REL7 ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SCC
ADG619BRTZ-500RL7 ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SCC
ADG620BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package (MSOP)	RM-8	SWB
ADG620BRM-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package (MSOP)	RM-8	SWB
ADG620BRM-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package (MSOP)	RM-8	SWB
ADG620BRMZ ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package (MSOP)	RM-8	S21
ADG620BRT-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SWB
ADG620BRT-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SWB
ADG620BRTZ-REEL7 ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	

${ }^{1}$ Branding on SOT-23 and MSOP is limited to three characters due to space constraints.
${ }^{2} Z=$ RoHS Compliant Part.

NOTES

ADG619/ADG620

NOTES

Rev. C| Page 16 of 16

[^0]: Rev. C
 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^1]: ${ }^{1}$ Temperature range for B version is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

[^2]: ${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

