

NTC Thermistors Products

IMPORTANT INFORMATION/DISCLAIMER

All product specifications, statements, information and data (collectively, the "Information") in this datasheet or made available on the website are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on AVX's knowledge of typical operating conditions for such applications, but are not intended to constitute and AVX specifically disclaims any warranty concerning suitability for a specific customer application or use.

ANY USE OF PRODUCT OUTSIDE OF SPECIFICATIONS OR ANY STORAGE OR INSTALLATION INCONSISTENT WITH PRODUCT GUIDANCE VOIDS ANY WARRANTY.

The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by AVX with reference to the use of AVX's products is given without regard, and AVX assumes no obligation or liability for the advice given or results obtained.

Although AVX designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Unless specifically agreed to in writing, AVX has not tested or certified its products, services or deliverables for use in high risk applications including medical life support, medical device, direct physical patient contact, water treatment, nuclear facilities, weapon systems, mass and air transportation control, flammable environments, or any other potentially life critical uses. Customer understands and agrees that AVX makes no assurances that the products, services or deliverables are suitable for any high-risk uses. Under no circumstances does AVX warrant or guarantee suitability for any customer design or manufacturing process.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

Table of Contents

NIC THERMISTORS	
Selection Guide	
Ordering Code	
General Characteristics	
Application Notes	
NTC SMD THERMISTORS	
NB 21 (Ni Barrier/100% Sn Termination)	
NB 12 - NB 20 (Ni Barrier/100% Sn Termination)	
NC 21 (AgPdPt Termination)	
NC 12 – NC 20 (PdPtAg Termination)	
Packaging	
Surface Mounting Guide	
NTC ACCURATE THERMISTORS	
NP30 - NJ 28 - NI 24 - NK 20	20
NTC DISC THERMISTORS	
ND 03/06/09 - NE 03/06/09 - NV 06/09	24
Packaging for Automatic Insertion	
NTC LEADLESS DISC THERMISTORS	30
RESISTANCE	
Tables of Resistance vs Temperature	32

As we are anxious that our customers should benefit from the latest developments in the technology and standards, AVX reserves the right to modify the characteristics published in this brochure.

NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All statements, information and data given herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required. Specifications are typical and may not apply to all applications.

Selection Guide

SMD - NI BARIER/100% SN TERMINATION (FOR LEAD FREE SOLDERING)

			•		•	
Series	Fig.	Size	Range	Op. Temp	Applications	Page
NB21	2	0603	Res: 47Ω - 470kΩ Tol: 3%*, 5%, 10%, 20%	-55 to +150°C	Temperature Compensation	10
NB12		0805	Res: 18Ω - 1MΩ Tol: 3%*, 5%, 10%, 20%	-55 to +150°C	Temperature Measurement Commercial, Industrial, Automotive	12
NB20		1206	Res: 220Ω - 1MΩ Tol: 3%*, 5%, 10%, 20%	-55 to +150°C	AEC-Q 200 Qualified	12

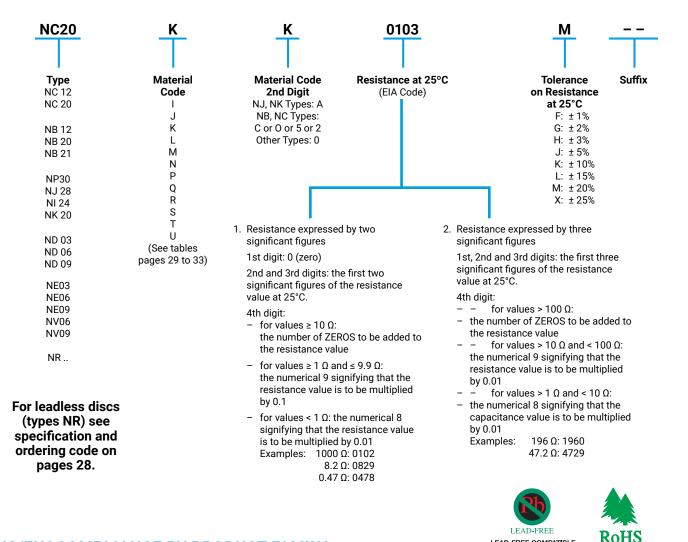
SMD - PDPTAG TERMINATION (FOR HYBRID ASSEMBLY)

Series	Fig.	Size	Range	Op. Temp	Applications	Page
NC12		0805	Res: 18Ω - 220kΩ Tol: 3%*, 5%, 10%, 20%	-55 to +150°C	Temperature CompensationTemperature Measurement	14
NC20		1206	Res: 10Ω - 1MΩ Tol: 3%*, 5%, 10%, 20%	-55 to +150°C	Commercial, Industrial, Automotive AEC-Q 200 Qualified	14

HIGH ACCURACY SERIES

Series	Fig.	Size	Range	Op. Temp	Applications	Page
NP30		3.0 mm	Res: 2kΩ - 100kΩ Tol: 1%, 2%, 3%	-55 to +150°C		19
NJ28		2.8mm	Res: 2kΩ - 100kΩ Tol: 1%, 2%, 3%	-55 to +150°C	High Accuracy Temperature Measurement	19
NI24		2.4mm	Res: 2kΩ - 100kΩ Tol: 1%, 2%, 3%	-55 to +150°C	Liquid level or flow detection Commercial, Industrial, Automotive	19
NK20		Custom	Res: 2kΩ - 100kΩ Tol: 1%, 2%, 3%	-55 to +150°C	• AEC-Q 200 Qualified	19

LEADED DISC


Series	Fig.	Size	Range	Op. Temp	Applications	Page
N.03		3.0 mm	Res: 680Ω - 1MΩ Tol: 3%*, 5%, 10%, 20%	-55 to +150°C	Temperature Measurement Temperature Operations	22
N.06		6.0 mm	Res: 150Ω - 330kΩ Tol: 3%*, 5%, 10%, 20%	-55 to +150°C	Temperature Compensation Liquid level or flow detection	22
N.09		9.0mm	Res: 68Ω - 150kΩ Tol: 3%*, 5%, 10%, 20%	-55 to +150°C	Commercial, Industrial, Automotive AEC-Q 200 Qualified	22

LEADLESS DISC

Series	Fig.	Size	Range	Op. Temp	Applications	Page
NR	0	Custom	Custom designed products generally defined at two temperatures	-40 to +200°C	Thermal control in automotive and industrial applications AEC-Q 200 Qualified	28

HOW TO ORDER

ROHS/ELV COMPLIANCE BY PRODUCT FAMILY

RoHS (Restriction of Hazardous Substances - European Union directive 2002/95/EC).

RoHS2 (Restriction of Hazardous Substances - European Union directive 2011/65/EC)

ELV (End of Life-Vehicle - European Union directive 2000/53/EC).

All Thermistor Products have been fully RoHS/ELV since before 2006.

Chip Thermistor NB RoHS/ELV Status: external Plating 100% smooth semi-bright Sn as standard SnPb Termination available on request.

Products that are supplied AS STANDARD in RoHS/ELV compliant form for listed

LEAD-FREE COMPATIBLE

Industrial	Product Family	RoHS Compliant for Material Listed					
Group	Series	Cadmium	Hexavalent Chromium	Lead	Mercury	PBBs	PBDEs
Leaded NTC	Thermistors NF NI	✓	~	~	~	~	~
Thermistors	Thermistors ND NJ NP	✓	V	✓	V	V	V
SMD	Thermistors NC	✓	~	V	~	~	~
Thermistors	Thermistors NB	V	✓	✓	✓	V	V

General Characteristics

1 - INTRODUCTION

NTC thermistors are thermally sensitive resistors made from a mixture of Mn, Ni, Co, Cu, Fe oxides. Sintered ceramic bodies of various sizes can be obtained. Strict conditions of mixing, pressing. sintering and metallization ensure an excellent batch-to-batch product characteristics.

This semi-conducting material reacts as an NTC resistor, whose resistance decreases with increasing temperature. This Negative Temperature Coefficient effect can result from an external change of the ambient temperature or an internal heating due to the Joule effect of a current flowing through the thermistor.

By varying the composition and the size of the thermistors, a wide range of resistance values (0.1Ω to $1M\Omega$) and temperature coefficients (-2 to -6% per °C) can be achieved.

RoHS (Restriction of Hazardous Substances - European Union directive 2002/95/EC).

ELV (End of Life-Vehicle - European Union directive 2000/53/EC).

All Thermistor Products have been fully RoHS/ELV since before 2006

Chip Thermistor NB RoHS/ELV Status: external Plating 100% smooth semi-bright Sn as standard SnPb Termination available on request.

2 - MAIN CHARACTERISTICS

2.1 CHARACTERISTICS WITH NO DISSIPATION

2.1.1. Nominal Resistance (Rn)

The nominal resistance of an NTC thermistor is generally given at 25°C. It has to be measured at near zero power so that the resultant heating only produces a negligible measurement error.

The following table gives the maximum advised measurement voltage as a function of resistance values and thermal dissipation factors.

This voltage is such that the heating effect generated by the measurement current only causes a resistance change of 1% Rn/ Rn.

Ranges of values	Maximum measuring voltage (V)				
(Ω)	δ=2mW/°C	δ=5mW/°C	δ=10 mW/°C	δ=20 mW/°C	
R 10				0.10	
10 < R 100		0.13	0.18	0.24	
100 < R 1,000	0.25	0.38	0.53	0.24	
1,000 < R 10,000	0.73	1.1	1.5	2.0	
10,000 < R 100,000	2.1	3.2	4.6		
R < 100,000	6.4	9.7	14.5		

2.1.2. Temperature -Resistance characteristics R (T)

This is the relation between the zero power resistance and the temperature. It can be determined by experimental measurements and may be described by the ratios R (T) /R (25°C) where:

> is the resistance at any temperature T R (25°C) is the resistance at 25°C.

These ratios are displayed on pages 29 to 33.

2.1.3. Temperature coefficient (a)

The temperature coefficient (a) which is the slope of the curve at a given point is defined by:

$$\alpha = \frac{100}{R} \bullet \frac{dR}{dT}$$
 and expressed in % per °C.

2.1.4. Sensitivity index (B)

The equation $R = A \exp(B/T)$ may be used as a rough approximation of the characteristic R (T).

B is called the sensitivity index or constant of the material used.

To calculate the B value, it is necessary to know the resistances R_1 and R_2 of the thermistor at the temperatures T_1 and T_2 .

The equation:
$$R_1 = R_2 \exp B \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

leads to:
$$B(K) = \frac{1}{\left(\frac{1}{T_1} - \frac{1}{T_2}\right)} \bullet \ln \left(\frac{R_1}{R_2}\right)$$

Conventionally, B will be most often calculated for temperatures T₁ = 25° C and T_2 = 85° C (298.16 K and 358.16 K).

In fact, as the equation $R = A \exp(B/T)$ is an approximation, the value of B depends on the temperatures T₁ and T₂ by which it is calculated.

For example, from the R (T) characteristic of material M (values given on page 29), it can be calculated:

When using the equation $R = A \exp(B/T)$ for this material, the error can vary by as much as 9% at 25°C, 0.6% at 55°C and 1.6% at 125°C.

Using the same equation, it is possible to relate the values of the index B and the coefficient a:

$$\alpha = \frac{1}{B} \bullet \frac{dR}{dT} = \frac{1}{A \exp(B/T)} \bullet A \exp(B/T) \bullet \frac{-B}{T^2}$$

thus
$$\alpha = -\frac{B}{T^2}$$
 expressed in %/°C

General Characteristics

2.1.5. Further approximation of R (T) curve

The description of the characteristic R (T) can be improved by using a greater number of experimental points, and by using the equation:

$$\frac{1}{T} = A + B (\ell n R) + C (\ell n R)^3$$

The parameters A, B and C are determined by solving the set of equations obtained by using the measured resistances at three temperatures.

The solution of the above equation gives the resistance at any temperature:

$$\begin{aligned} & \ell_{\text{N R (T)}} = \frac{1}{3} \left[\!\!\! \left[\!\!\! \frac{3}{2} \sqrt{\!\!\! -\frac{27}{2} \! \left(\!\!\! \frac{A\!-1/T}{C} \!\!\! \right) \!\!\! + \!\!\! \frac{3}{2} \sqrt{3} \! \left(\!\!\! \sqrt{27 \! \left(\!\!\! \frac{A\!-1/T}{C} \!\!\! \right) \!\!\!^2 + 4 \! \left(\!\!\! \frac{B}{C} \!\!\! \right)} \right.^3 \right) \\ & - \frac{3}{2} \sqrt{\!\!\! + \!\!\! \frac{27}{2} \! \left(\!\!\! \frac{A\!-1/T}{C} \!\!\! \right) \!\!\! + \!\!\! \frac{3}{2} \sqrt{3} \! \left(\!\!\! \sqrt{27 \! \left(\!\!\! \frac{A\!-1/T}{C} \!\!\! \right) \!\!\!^2 + 4 \! \left(\!\!\! \frac{B}{C} \!\!\! \right) \!\!\!^3} \right) \right] } \end{aligned}$$

The precision of this description is typically 0.2°C for the range -50 to $+150^{\circ}\text{C}$ (A, B, C being determined with experimental values at -20, +50 and 120°C) or even better if this temperature range is reduced. The ratios R(T)/R(25°C) for each of the different materials shown on pages 29 to 33 have been calculated using the above method.

2.1.6. Resistance tolerance and temperature precision

An important characteristic of a thermistor is the tolerance on the resistance value at a given temperature.

This uncertainty on the resistance (DR/R) may be related to the corresponding uncertainty on the temperature (DT), using the relationship:

$$\Delta T = 100 \bullet \frac{\Delta R}{R} \bullet \frac{1}{\alpha}$$

Example: consider the thermistor ND06M00152J -

- R (25°C) = 1500 ohms
- Made from M material
- R (T) characteristic shown on page 23 gives: α = 4.4%/°C at 25°C
- Tolerance $\Delta R/R = \pm 5\%$ is equivalent to: $\Delta T = 5\%/4.4\%$ °C = ± 1.14 °C

2.1.7. Resistance tolerance at any temperature

Any material used for NTC manufacturing always displays a dispersion for the R (T) characteristic.

This dispersion depends on the type of material used and has been especially reduced for our accuracy series thermistors.

Thus, the tolerance on the resistance ($\Delta R_2/R_2$) at a temperature T_2 is the sum of two contributions as illustrated on Figure 1:

- the tolerance $\Delta R_1/R_1$ at a temperature T_1 used as a reference.
- an additional contribution due to the dispersion on the characteristic R (T) which may be called "Manufacturing tolerance" (Tf).

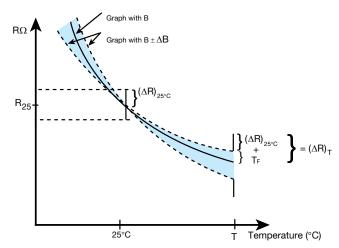


Figure 1

Differentiating the equation $R = A \exp(B/T)$, the two contributions on the tolerance at T can also be written:

$$\frac{\Delta R_2}{R_2} = \frac{\Delta R_1}{R_1} + \frac{1}{T_1} - \frac{1}{T_2} \bullet \Delta B$$

The T(f) values given with the resistance – temperature characteristics on pages 29 to 33 are based on a computer simulation using this equation and experimental values.

2.1.8. Designing the resistance tolerances

Using the fact that the coefficient decreases with temperature ($\alpha = -B/T^2$), it is generally useful to define the closest tolerance of the thermistor at the maximum value of the temperature range where an accuracy in °C is required.

For example, let us compare the two designs 1 and 2 hereafter:

Т	R	α	Design 1		Desi	gn 2
(°C)	(Ω)	(%/°C)	ΔR/R(%)	T(°C)	ΔR/R(%)	T(°C)
0	3275	-5.2	3.5	0.7	5.0	1.0
25	1000	-4.4	3.0	0.7	4.5	1.1
55	300	-3.7	3.5	1.0	4.0	1.1
85	109	-3.1	4.1	1.3	3.4	1.1
100	69.4	-2.9	4.5	1.6	3.0	1.0

Only the Design 2 is able to meet the requirement $T \approx 1^{\circ}C$ from 25°C to 100°C.

General Characteristics

2.1.9. Shaping of the R (T) characteristic

By the use of a resistor network, it is possible to modify the R (T) characteristic of a thermistor so that it matches the required form, for example a linear response over a restricted temperature range.

A single fixed resistor Rp placed in parallel with a thermistor gives a S-shape resistance-temperature curve (see Figure 2) which is substantially more linear at the temperature range around the inflexion point (Ro, To).

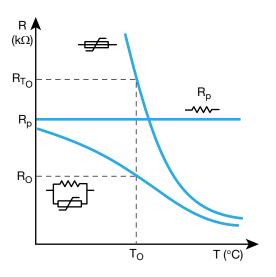


Figure 2 - Linearization of a thermistor

It can be calculated that better linearization is obtained when the fixed resistor value and the mid-range temperature are related by the formula:

$$Rp = R_{To} \times \frac{B - To}{B + 2To}$$

For example, with a thermistor ND03N00103J -

$$R_{25^{\circ}C} = 10k\Omega$$
, B = 4080 K

good linearization is obtained with a resistor in parallel where the value is:

$$Rp = 10,000 \Omega \times \frac{4080 - 298}{4080 + (2 \times 298)} = 8088 \Omega$$

2.2 CHARACTERISTICS WITH ENERGY DISSIPATION

When a current is flowing through an NTC thermistor, the power due to the Joule effect raises the temperature of the NTC above ambient.

The thermistor reaches a state of equilibrium when the power supplied becomes equal to the power dissipated in the environment.

The thermal behavior of the thermistor is mainly dependent on the size, shape and mounting conditions.

Several parameters have been defined to characterize these properties:

2.2.1. Heat capacity (H)

The heat capacity is the amount of heat required to change the temperature of the thermistor by 1°C and is expressed in J/°C.

2.2.2. Dissipation factor ()

This is the ratio between the variation in dissipated power and the variation of temperature of the NTC. It is expressed in mW/°C and may be measured as:

$$\delta = \frac{\text{U.I}}{85 - 25}$$

where U.I is the power necessary to raise to 85°C the temperature of a thermistor maintained in still air at 25°C.

2.2.3. Maximum permissible temperature (T max)

This is the maximum ambient temperature at which the thermistor may be operated with zero dissipation. Above this temperature, the stability of the resistance and the leads attachment can no longer be guaranteed.

2.2.4. Maximum permissible power at 25°C (Pmax)

This is the power required by a thermistor maintained in still air at 25°C to reach the maximum temperature for which it is specified.

For higher ambient temperatures, the maximum permissible power is generally derated according to the Figure 3 here after and TL = Tmax - 10°C.

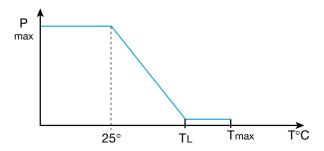


Figure 3 - Derating of maximum power

General Characteristics

2.2.5. Voltage - Current curves V (I)

These curves describe the behavior of the voltage drop V measured across the NTC as the current I through the NTC is increased.

They describe the state of equilibrium between power resulting from Joule effect and dissipated power in the surroundings. (Figure 4)

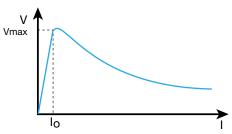


Figure 4 - Voltage - current curve V (I)

Several zones can be identified:

- low current zone dissipated energy only produces negligible heating and the curve V (I) is almost linear.
- non-linear zone

the curve V (I) displays a maximum voltage Vmax for a current lo. This maximum voltage Vmax and the temperature Tmax reached by the NTC under these conditions can be determined by using the equations:

$$P = V^{2}/R = \delta (T - T_{amb})$$
 and
$$R = R_{amb} \cdot exp B (1/T - 1/T_{amb})$$

therefore:

Tmax = B/2 -
$$\sqrt{B^2/4}$$
 - BT_{amb} \simeq T_{amb} $\left(1 + \frac{T_{amb}}{B}\right)$
Vmax = $\sqrt{\delta \left(T_{max} - T_{amb}\right)} \cdot R_{amb} \exp \left[B\left(\frac{1}{T_{max}} - \frac{1}{T_{amb}}\right)\right]$

where is the dissipation factor and Tamb is the ambient temperature.

- high current zone

for higher currents, an increase in temperature of the NTC decreases the resistance and the voltage more rapidly than the increase of the current. Above a certain dissipated power, the temperature of the NTC exceeds the permissible value.

2.2.6. Current – Time curves I(t)

When voltage is applied to a thermistor, a certain amount of time is necessary to reach the state of equilibrium described by the V(I) curves.

This is the heating up time of the thermistor which depends on the voltage and the resistance on one side and the heat capacity and dissipation on the other.

The curves I(t) are of particular interest in timing applications.

2.2.7. Thermal time constant

When a thermistor is self-heated to a temperature T above ambient temperature Tamb, and allowed to cool under zero power resistance, this will show a transient situation.

At any time interval dt, dissipation of the thermistor ($\delta(T-T_{amb})$ dt) generates a temperature decrease –HdT, resulting in the equation:

$$\frac{1}{(T - T_{amb})} dT = -\frac{\delta}{H} dt$$

The solution to this equation for any value of t, measured from t = 0, is:

$$\ell n \frac{(T - T_{amb})}{(T_0 - T_{amb})} = -\frac{\delta}{H} t$$

We can define a thermal time constant τ as:

 $\tau = H/\delta$ expressed in seconds.

Where the time $t = \tau$:

$$(T - T_{amb}) / (To - T_{amb}) = exp - 1 = 0.368$$

expressing that for $t = \tau$, the thermistor cools to 63.2% of the temperature difference between the initial To and Tamb (see Figure 5).

According to IEC 539 our technical data indicates τ measured with To = 85°C, T_{amb} = 25°C and consequently T = 47.1°C.

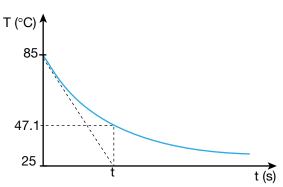


Figure 5 - Temperature - time curve T(t)

2.2.8. Response time

More generally, it is possible to define a response time as the time the thermistor needs to reach 63.2% of the total temperature difference when submitted to a change in the thermal equilibrium (for example from 60°C to 25°C in silicone oil 47V20 Rhodorsil).

Application Notes

Figure 7

TEMPERATURE MEASUREMENT

High sensitivity and low cost make NTC thermistors the most common device used for temperature measurement.

Non-linearity of the R-T curve generally leads to the use of a resistor network to linearize the signal. An example is given in Figure 6.

More precise measurements and temperature display can also be achieved with simple electronic equipment as shown in Figure 7.

The choice of the model will particularly take into account the small size (better response time) and the resistance tolerance. Mounting conditions (dissipation), and input voltage (self-heating) will also be carefully defined to avoid serious errors in temperature measurement.

TEMPERATURE CONTROL AND ALARM

NTC thermistors can be used as a simple on-off control temperature system or temperature alarm system. Figure 8 gives an example of such a circuit.

When the temperature increases to a defined value, the resistance of the thermistor decreases and the current becomes sufficiently high to energize the relay and provide temperature alarm or heating system turn-off.

The high sensitivity of thermistors (about 4% resistance change for 1°C) allows the temperature to be controlled very precisely.

TEMPERATURE COMPENSATION

As many electronic components (integrated circuits, amplifiers,...) have a positive temperature coefficient of resistance, NTC thermistors represent a cheap and interesting solution to compensate for this effect and provide an improved temperature stability for electronic equipment.

It is necessary to include the thermistor in a resistor network (Figure 10) calculated in such a manner that the network coefficient compensates exactly for the positive temperature coefficient of the other component (Figure 9).

Common leaded discs or chip thermistors are well suited for this application.

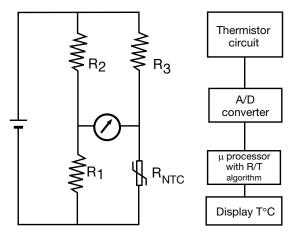


Figure 6

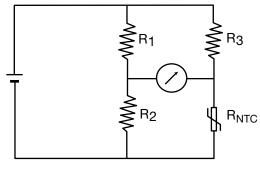


Figure 8

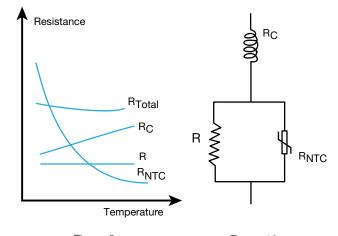


Figure 9 Figure 10

Application Notes

LIQUID LEVEL OR FLOW DETECTION

The dissipation of a thermistor is significantly different in a liquid or in a gas, in a static fluid or in a stirred one. A liquid level detector or a gas—flow measurement can be designed using this property.

In Figure 11, the output voltage measured on the thermistor depends upon the dissipation factor of its environment, and can be illustrated by V-I curves (Figure 12).

This voltage can be used to detect the presence (V_2) or absence (V_1) of liquid around the thermistor or measure the flow speed.

A good design should define a precise operating temperature range, where dissipation in the high dissipating medium at highest ambient temperature remains higher than the dissipation in low dissipating medium at lowest ambient temperature.

SURGE PROTECTION

A soft start of sensitive apparatus can be achieved by using NTC thermistors as described in Figures 13 and 14.

At turn-on, the NTC absorbs the surge current, limits the current across the equipment and protects it. Then, the thermistor heats, its resistance decreases and most of the power becomes applied to the apparatus.

In its design, the thermistor will be selected with a thermal capacity higher than the surge energy to absorb.

TIME DELAY

The current-time characteristic of a thermistor is used in time delay applications such as delaying energization of a relay after application of power to an electrical circuit.

The time delay, time necessary for the thermistor to heat up to the temperature where its resistance allows the current to reach the switching value of the relay, is mainly defined with the nominal resistance of the thermistor.

The time delay is also strongly dependent upon the ambient temperature, as shown in Figure 15.

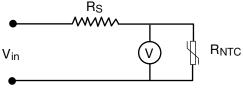


Figure 11

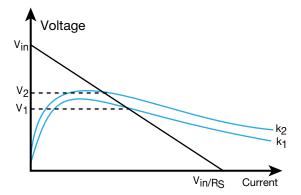


Figure 12

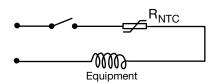


Figure 13

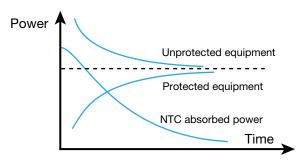


Figure 14

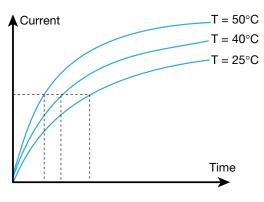


Figure 15

NB 21 (Ni Barrier/100% Sn Termination)

Chip thermistors are high quality and low cost devices especially developed for surface mounting applications. They are widely used for temperature compensation but can also achieve temperature control of printed circuits.

A nickel barrier metallization provides outstanding qualities of solderability and enables this chip to meet the requirements of the most severe soldering processes including lead free soldering with peak temperatures up to 270°C.

Types	NB 21 IEC SIZE : 0603		
DIMENSIONS: millimeters (inches)	1.6 (.063) 0.2 (.008) 0.8 (.031) ±0.2 (.008) 0.8 (.031) ±0.2 (.008) min 0.2 (.008) min		
Terminations	Nickel Barrier/100% Tin		
Marking	On packaging only		
Climatic category	40/125/56		
Operating temperature	-55°C to +150°C		
Tolerance on Rn (25°C)	±3%*, ±5%, ±10%, ±20%		
Maximum dissipation at 25°C	0.07 W		
Thermal dissipation factor	1 mW/°C		
Thermal time constant	4 s		

Resistance - Temperature characteristics: pages 29 to 33.

FEATURES

- · Fast thermal response
- · Commercial, Industrial and Automotive Applications
- · Ni Barrier/100% Sn Termination
- Suitable for lead free reflow or wave soldering
- · AEC-Q200 based qualification

APPLICATIONS

- · LCD compensation
- Battery packs
- · Mobile phones
- · CD players
- · Heating systems
- · Air-conditioning systems
- Refrigeration
- Temperature control of Switch Mode Power Supplies
- Compensation of pressure sensors
- · Protection of power transistors in various electronic circuits and more

HOW TO ORDER

-: Bulk (5000 pcs/bag)

BB: Cardboard tape (180mm diam. reel, 4000 pcs/reel)

BF: Cardboard tape (1/2 reel, 2000 pcs/reel)

BD: Cardboard tape (330mm diam. reel, 10,000 pcs/reel)

^{*} Optional tolerance, please contact factory

TABLE OF VALUES

NB 21 IEC SIZE : 0603							
Types	Rn at 25°C (Ω)	Material Code	B (K) (\(\Delta B/B \) (2) \(\pm 3\% \)	α at 25°C (%/°C)			
NB 21 KC 0 470 NB 21 KC 0 101 NB 21 KC 0 471	47 100 470	KC	3470 ± 5%	- 3.9			
NB 21 MC 0 102	1,000	MC	3910 ± 3%	- 4.4			
NB 21 J 0 0472 NB 21 J 0 0502	4,700 5,000	J	3480 ± 3%	- 3.9			
NB 21 J 5 0682 NB 21 J 5 0103	6,800 10,000	J5	3480 ± 3%	- 3.9			
NB 21 K 0 0103 NB 21 K 0 0153	10,000 15,000	К	3630 ± 3%	- 4.0			
NB 21 L 0 0223	22,000	L	3790 ± 3%	- 4.2			
NB 21 M 0 0333 NB 21 M 0 0473	33,000 47,000	М	3950 ± 3%	- 4.4			
NB 21 M4 0 503	50,000	M4	4000 ± 3%	- 4.4			
NB 21 L 2 0683	68,000	L2	3805 ± 3%	- 4.1			
NB 21 N 0 0683	68,000	N	4080 ± 3%	- 4.6			
NB 21 N 5 0104	100,000	N5	4160 ± 3%	- 4.7			
NB 21 P 0 0154	150,000	Р	4220 ± 3%	- 4.7			
NB 21 Q 0 0334 NB 21 Q 0 0474	330,000 470,000	Q	4300 ± 3%	- 4.7			

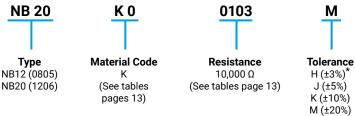
NB 12 - NB 20 (Ni Barrier/100% Sn Termination)

Chip thermistors are high quality and low cost devices especially developed for surface mounting applications. They are widely used for temperature compensation but can also achieve temperature control of printed circuits.

A nickel barrier metallization provides outstanding qualities of solderability and enables this chip to meet the requirements of the most severe soldering processes including lead free soldering with peak temperatures up to 270°C.

Types	NB 12 IEC SIZE : 0805			
DIMENSIONS: millimeters (inches)	2 (.079) ± 0.3 (.012) 1.25 (.049) ± 0.2 (.008) 0.5 (.020) 1.3 (.051) 0.2 (.008) min 0.2 (.008) min	3.2 (.126) ± 0.4 (.016) 1.6 (.063) ± 0.25 (.010) 0.5 (.020) 1.5 (.059) 0.2 (.008) min		
Terminations	Nickel Barri	er/100% Tin		
Marking	On packa	iging only		
Climatic category	40/12	25/56		
Operating temperature	-55°C to	+150°C		
Tolerance on Rn (25°C)	±3%*, ±5%, ±10%, ±20%			
Maximum dissipation at 25°C	0.12 W 0.24 W			
Thermal dissipation factor	2 mW/°C 4 mW/°C			
Thermal time constant	5 s 7s			

Resistance - Temperature characteristics: pages 29 to 33.


FEATURES

- · Fast thermal response
- Commercial, Industrial and Automotive Applications
- · Ni Barrier/100% Sn Termination
- Suitable for lead free reflow or wave soldering
- · AEC-Q200 based qualification

APPLICATIONS

- · LCD compensation
- · Battery packs
- · Mobile phones
- · CD players
- · Heating systems
- · Air-conditioning systems
- Refrigeration
- Temperature control of Switch Mode Power Supplies
- Compensation of pressure sensors
- · Protection of power transistors in various electronic circuits and more

HOW TO ORDER

010617

Suffix: Packaging

- -: Bulk (5000 pcs/bag)

NB20 BA: Plastic tape (180mm diam. reel, 3000 pcs/reel)

BE: Plastic tape (1/2 reel, 1500 pcs/reel)

BC: Plastic tape (330mm diam. reel, 10,000 pcs/reel) NB12 BB: Cardboard tape (180mm diam. reel, 4000 pcs/reel)

BF: Cardboard tape (1/2 reel, 2000 pcs/reel)

BD: Cardboard tape (330mm diam. reel, 10,000 pcs/reel)

^{*} Optional tolerance, please contact factory

TABLE OF VALUES

	NB 12				
	!	EC SIZE : 0805			
Types	Rn at 25°C (Ω)	Material Code	B (K) (ΔB/B ^{(1) ±5%} _{(2) ±3%})	α at 25°C (%/°C)	
NB 12 KC 0 180	18				
NB 12 KC 0 220	22				
NB 12 KC 0 270	27				
NB 12 KC 0 330	33				
NB 12 KC 0 390 NB 12 KC 0 470	39 47	KC	3470 ± 5%	- 3.9	
NB 12 KC 0 470	56				
NB 12 KC 0 500	68				
NB 12 KC 0 820	82				
NB 12 KC 0 101	100				
NB 12 MC 0 121	120				
NB 12 MC 0 151	150				
NB 12 MC 0 181	180				
NB 12 MC 0 221	220				
NB 12 MC 0 271	270				
NB 12 MC 0 331	330				
NB 12 MC 0 391	390				
NB 12 MC 0 471	470				
NB 12 MC 0 561	560	мс	3910 ± 3%	- 4.4	
NB 12 MC 0 681	680	IVIC	3910 13%	- 4.4	
NB 12 MC 0 821	820				
NB 12 MC 0 102	1,000				
NB 12 MC 0 122	1,200				
NB 12 MC 0 152	1,500				
NB 12 MC 0 182 NB 12 MC 0 222	1,800				
NB 12 MC 0 222	2,200				
NB 12 MC 0 272	2,700 3,300				
NB 12 J 0 0332	3,300				
NB 12 J 0 0392	3,900				
NB 12 J 0 0472	4,700	J	3480 ± 3%	- 3.9	
NB 12 J 0 0502	5,000				
NB 12 J 0 0562	5,600				
NB 12 K 0 0682	6,800				
NB 12 K 0 0822	8,200	к	3630 ± 3%	- 4.0	
NB 12 K 0 0103	10,000	Ι.	3030 I 3%	- 4.0	
NB 12 K 0 0123	12,000				
NB 12 L 0 0153	15,000	L	3790 ± 3%	- 4.2	
NB 12 L 0 0183	18,000	-	3,70 2 0,0	1.2	
NB 12 M 0 0223	22,000				
NB 12 M 0 0273	27,000	М	3950 ± 3%	- 4.4	
NB 12 M 0 0333	33,000				
NB 12 M 0 0393 NB 12 N 0 0473	39,000 47,000				
NB 12 N 0 0473	50,000	N	4080 ± 3%	- 4.6	
NB 12 N 0 0563	56,000	14	+000±3%	+.0	
NB 12 L 2 0683	68,000	L2	3805 ± 3%	- 4.1	
NB 12 N 0 0823	82,000	N	4080 ± 3%	- 4.6	
NB 12 P 0 0104	100,000	.,			
NB 12 P 0 0124	120,000	Б	4000 + 00	4.7	
NB 12 P 0 0154	150,000	Р	4220 ± 3%	- 4.7	
NB 12 P 0 0184	180,000				
NB 12 Q 0 0224	220,000	Q	4300 ± 3%	-4.7	

	NB 20 IEC SIZE : 1206					
Types	Rn at 25°C (Ω)	Material Code	B (K) (∆B/B (1) ±5% (2) ±3%)	α at 25°C (%/°C)		
NB 20 MC 0 221	220	MC	3910 ± 3%	- 4.4		
NB 20 MC 0 102	1,000	M	3910 ± 3%	- 4.4		
NB 20 J 0 0472	4.700	С				
NB 20 J 0 0502	5,000	J	3480 ± 3%	- 3.9		
NB 20 J 0 0562	5,600	J	0400 1 0%	0.5		
NB 20 J 0 0682	6,800					
NB 20 J 5 0822	8,200	J5	3480 ± 3%	- 3.9		
NB 20 K 0 0103	10,000	14	3630 ± 3%	- 4.0		
NB 20 K 0 0123	12,000	K				
NB 20 L 0 0153	15,000		3790 ± 3%	- 4.2		
NB 20 L 0 0183	18,000	L				
NB 20 L 0 0223	22,000					
NB 20 M 0 0273	27,000					
NB 20 M 0 0333	33,000	М	3950 ± 3%	- 4.4		
NB 20 M 0 0393	39,000					
NB 20 M 0 0473	47,000					
NB 20 M 4 0503	50,000	M4	4000 ± 3%	- 4.4		
NB 20 N 0 0563	56,000					
NB 20 N 0 0683	68,000	N	4080 ± 3%	- 4.6		
NB 20 N 0 0823	82,000					
NB 20 N 5 0104	100,000	N5	4160 ± 3%	- 4.7		
NB 20 P 0 0124	120,000					
NB 20 P 0 0154	150,000	Р	4220 ± 3%	- 4.7		
NB 20 P 0 0184 NB 20 P 0 0224	180,000 220,000	P	4220 I 3%	- 4.7		
NB 20 O 0 0274	270.000					
NB 20 Q 0 0274	330,000					
NB 20 Q 0 0394	390,000	Q	4300 ± 3%	- 4.7		
NB 20 Q 0 0474	470,000					
NB 20 Q 0 0564	560,000					
NB 20 R 0 0684	680,000					
NB 20 R 0 0824	820,000	R	4400 ± 3%	- 4.8		
NB 20 R 0 0105	1,000,000					

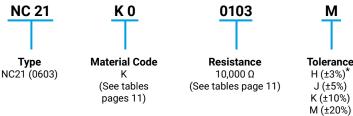
NC 21 (AgPdPt Termination)

Chip thermistors are high quality and low cost devices especially developed for surface mounting applications. They are widely used for temperature compensation but can also achieve temperature control of printed circuits.

Its silver-palladium-platinum metallization provides a high degree of resistance to dewetting of the terminations (typically 260°C / 15 s). Parts are suitable for hybrid assembly process (conductive adhesive), not suitable for lead free soldering.

Types	NC 21 IEC SIZE : 0603		
DIMENSIONS: millimeters (inches)	1.6 (.063) 0.2 (.008) 0.8 (.031) ±0.2 (.008) 0.8 (.031) ±0.2 (.008) min 0.2 (.008) min		
Terminations	PdPtAg		
Marking	On packaging only		
Climatic category	40/125/56		
Operating temperature	-55°C to +150°C		
Tolerance on Rn (25°C)	±3%*, ±5%, ±10%, ±20%		
Maximum dissipation at 25°C	0.07 W		
Thermal dissipation factor	1 mW/°C		
Thermal time constant	4 s		

Resistance - Temperature characteristics: pages 29 to 33.


FEATURES

- · Fast thermal response
- Commercial, Industrial and Automotive Applications
- PdPtAg Termination
- Suitable for hybrid assembly (conductive adhesive
- · AEC-Q200 based qualification

APPLICATIONS

- · LCD compensation
- Battery packs
- · Mobile phones
- · CD players
- · Heating systems
- · Air-conditioning systems
- Refrigeration
- Temperature control of Switch Mode Power Supplies
- Compensation of pressure sensors
- · Protection of power transistors in various electronic circuits and more

HOW TO ORDER

BB Suffix: Packaging

-: Bulk (5000 pcs/bag)

BB: Cardboard tape (180mm diam. reel, 4000 pcs/reel)

BF: Cardboard tape (1/2 reel, 2000 pcs/reel)

BD: Cardboard tape (330mm diam. reel, 10,000 pcs/reel)

^{*} Optional tolerance, please contact factory

TABLE OF VALUES

NC 21 IEC SIZE : 0603					
Types	Rn at 25°C (Ω)	Material Code	B (K) (ΔB/B (1) ± 5%)	α at 25°C (%/°C)	
NC 21 KC 0 470 NC 21 KC 0 101 NC 21 KC 0 471	47 100 470	KC	3470 ± 5%	- 3.9	
NC 21 MC 0 102	1,000	MC	3910 ± 3%	- 4.4	
NC 21 J 0 0472 NC 21 J 0 0502	4,700 5,000	J	3480 ± 3%	- 3.9	
NC 21 J 5 0682 NC 21 J 5 0103	6,800 10,000	J5	3480 ± 3%	- 3.9	
NC 21 K 0 0103 NC 21 K 0 0153	10,000 15,000	К	3630 ± 3%	- 4.0	
NC 21 L 0 0223	22,000	L	3790 ± 3%	- 4.2	
NC 21 M 0 0333 NC 21 M 0 0473	33,000 47,000	М	3950 ± 3%	- 4.4	
NC 21 M4 0 503	50,000	M4	4000 ± 3%	- 4.4	
NC 21 L 2 0683	68,000	L2	3805 ± 3%	- 4.1	
NC 21 N 0 0683	68,000	N	4080 ± 3%	- 4.6	
NC 21 N 5 0104	100,000	N5	4160 ± 3%	- 4.7	
NC 21 P 0 0154	150,000	Р	4220 ± 3%	- 4.7	
NC 21 Q 0 0334 NC 21 Q 0 0474	330,000 470,000	Q	4300 ± 3%	- 4.7	

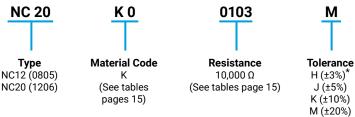
NC 12 - NC 20 (PdPtAg Termination)

Chip thermistors are a high quality and low cost device especially developed for surface mounting applications. They are widely used for temperature compensation but can also achieve temperature control of printed circuits. Its silver - palladium - platinum

metallization provides a high degree of resistance to dewetting of the terminations during soldering (typically 260°C / 15 s). Parts are suitable for hybrid assembly process, not suitable for lead free soldering.

Types	NC 12 IEC SIZE : 0805	NC 20 IEC SIZE : 1206		
DIMENSIONS: millimeters (inches)	2 (.079) ± 0.3 (.012) 1.25 (.049) ± 0.2 (.008) 0.5 (.020) 1.3 (.051) 0.2 (.008) min 0.2 (.008) min	3.2 (.126) ± 0.4 (.016) 1.6 (.063) ± 0.25 (.010) 0.5 (.020) 1.5 (.059) 0.2 (.008) min		
Terminations	Silver – palladium – platinum metallization			
Marking	On packaging only			
Climatic category	40/125/56			
Operating temperature	-55°C to +150°C			
Tolerance on Rn (25°C)	±3%*, ±5%, ±10%, ±20%			
Maximum dissipation at 25°C	0.12 W	0.24 W		
Thermal dissipation factor	2 mW/°C	4 mW/°C		
Thermal time constant	5 s 7 s			

Resistance - Temperature characteristics: pages 29 to 33.


FEATURES

- · Fast thermal response
- Commercial, Industrial and Automotive Applications
- · PdPtAg Termination
- · Suitable for hybrid assembly
- · AEC-Q200 based qualified

APPLICATIONS

- · LCD compensation
- Battery packs
- · Mobile phones
- · CD players
- · Heating systems
- · Air-conditioning systems
- Refrigeration
- Temperature control of Switch Mode Power Supplies
- · Compensation of pressure sensors
- Protection of power transistors in various electronic circuits and more

HOW TO ORDER

erance ±3%)* (±5%) ±10%) ±20%)

010617

Suffix: Packaging - -: Bulk (5000 pcs/bag)

NB20 BA: Plastic tape (180mm diam. reel, 3000 pcs/reel)

BE: Plastic tape (1/2 reel, 1500 pcs/reel)

BC: Plastic tape (330mm diam. reel, 10,000 pcs/reel)

NB12 BB: Cardboard tape (180mm diam. reel, 4000 pcs/reel)

BF: Cardboard tape (1/2 reel, 2000 pcs/reel)

BD: Cardboard tape (330mm diam. reel, 10,000 pcs/reel)

^{*} Optional tolerance, please contact factory

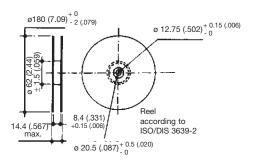
NC 12 - NC 20 (PdPtAg Termination)

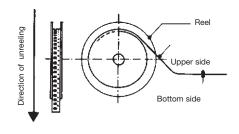
TABLE OF VALUES

NC 12 IEC SIZE : 0805					
Types	Types Rn at 25°C (Ω)			α at 25°C (%/°C)	
NC 12 KC 0 180 NC 12 KC 0 220 NC 12 KC 0 270 NC 12 KC 0 330 NC 12 KC 0 390 NC 12 KC 0 470 NC 12 KC 0 560 NC 12 KC 0 680 NC 12 KC 0 820 NC 12 KC 0 101	18 22 27 33 39 47 56 68 82 100	кс	3470 ± 5%	- 3.9	
NC 12 MC 0 121 NC 12 MC 0 151 NC 12 MC 0 181 NC 12 MC 0 221 NC 12 MC 0 271 NC 12 MC 0 331 NC 12 MC 0 371 NC 12 MC 0 471 NC 12 MC 0 561 NC 12 MC 0 681 NC 12 MC 0 102 NC 12 MC 0 102 NC 12 MC 0 122 NC 12 MC 0 182 NC 12 MC 0 222 NC 12 MC 0 222 NC 12 MC 0 272 NC 12 MC 0 332	120 150 180 220 270 330 390 470 560 680 820 1,000 1,500 1,500 1,800 2,200 2,700 3,300	МС	3910 ± 3%	- 4.4	
NC 12 J 0 0332 NC 12 J 0 0392 NC 12 J 0 0472 NC 12 J 0 0502 NC 12 J 0 0562	3,300 3,900 4,700 5,000 5,600	J	3480 ± 3%	- 3.9	
NC 12 K 0 0682 NC 12 K 0 0822 NC 12 K 0 0103 NC 12 K 0 0123	6,800 8,200 10,000 12,000	К	3630 ± 3%	- 4.0	
NC 12 L 0 0153 NC 12 L 0 0183	15,000 18,000	L	3790 ± 3%	- 4.2	
NC 12 M 0 0223 NC 12 M 0 0273 NC 12 M 0 0333 NC 12 M 0 0393	22,000 27,000 33,000 39,000	М	3950 ± 3%	- 4.4	
NC 12 N 0 0473 NC 12 N 0 0503 NC 12 N 0 0563	47,000 56,000	N	4080 ± 3%	- 4.6	
NC 12 L 2 0683	68,000	L2	3805 ± 3%	- 4.1	
NC 12 N 0 0823	82,000	N	4080 ± 3%	- 4.6	
NC 12 P 0 0104 NC 12 P 0 0124 NC 12 P 0 0154 NC 12 P 0 0184	100,000 120,000 150,000 180,000	Р	4220 ± 3%	- 4.7	
NC 12 Q 0 0224	220,000	Q	4300 ± 3%	-4.7	

NC 20 IEC SIZE : 1206				
Types	Rn at 25°C (Ω)	Material Code	B (K) (\(\Delta B/B \) (2) \(\pm 3\) (3)	α at 25°C (%/°C)
NC 20 KC 0 100 NC 20 KC 0 120 NC 20 KC 0 150 NC 20 KC 0 180 NC 20 KC 0 220 NC 20 KC 0 370 NC 20 KC 0 390 NC 20 KC 0 470 NC 20 KC 0 560 NC 20 KC 0 680 NC 20 KC 0 820 NC 20 KC 0 820 NC 20 KC 0 101	10 12 15 18 22 27 33 39 47 56 68 82 100	кс	3470 ± 5%	- 3.9
NC 20 MC 0 121 NC 20 MC 0 151 NC 20 MC 0 181 NC 20 MC 0 221 NC 20 MC 0 331 NC 20 MC 0 391 NC 20 MC 0 561 NC 20 MC 0 681 NC 20 MC 0 681 NC 20 MC 0 102 NC 20 MC 0 102 NC 20 MC 0 122 NC 20 MC 0 152	120 150 180 220 270 330 390 470 560 680 820 1,000 1,200 1,500	МС	3910 ± 3%	- 4.4
NC 20 0 0182 NC 20 0 0222 NC 20 0 0272 NC 20 0 0332	1,800 2,200 2,700 3,300	I	3250 ± 5%	- 3.7
NC 20 J 0 0392 NC 20 J 0 0472 NC 20 J 0 0502 NC 20 J 0 0562 NC 20 J 0 0682	3,900 4,700 5,000 5,600 6,800	J	3480 ± 3%	- 3.9
NC 20 K 0 0822 NC 20 K 0 0103 NC 20 K 0 0123 NC 20 K 0 0153	8,200 10,000 12,000 15,000	К	3630 ± 3%	- 4.0
NC 20 L 0 0183 NC 20 L 0 0223	18,000 22,000	L	3790 ± 3%	- 4.2
NC 20 M 0 0273 NC 20 M 0 0333 NC 20 M 0 0393 NC 20 M 0 0473	27,000 33,000 39,000 47,000	М	3950 ± 3%	- 4.4
NC 20 M 4 0503	50,000	M4	4000 ± 3%	- 4.4
NC 20 N 0 0563 NC 20 N 0 0683 NC 20 N 0 0823 NC 20 N 0 0104	56,000 68,000 82,000 100,000	N	4080 ± 3%	- 4.6
NC 20 P 0 0124 NC 20 P 0 0154 NC 20 P 0 0184 NC 20 P 0 0224	120,000 150,000 180,000 220,000	Р	4220 ± 3%	- 4.7
NC 20 Q 0 0274 NC 20 Q 0 0334 NC 20 Q 0 0394 NC 20 Q 0 0474	270,000 330,000 390,000 470,000	Q	4300 ± 3%	- 4.7
NC 20 R 0 0564 NC 20 R 0 0684 NC 20 R 0 0824 NC 20 R 0 0105	560,000 680,000 820,000 1,000,000	R	4400 ± 3%	- 4.8

PACKAGING FOR AUTOMATIC INSERTION


AUTOMATIC INSERTION


Super 8 Plastic Tape Packaging:

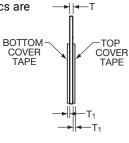
The mechanical and dimensional reel characteristics are in accordance with the IEC publication 286-3.

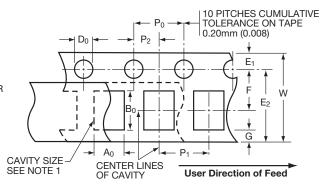
De	esignation	Symbol	Value	Tolerance
Tape width		W	8	±0.2
Tape thickness		Т	0.4 max.	
Pitch of the spr	ocket holes	P0	4	±0.1
Diameter of the	e sprocket holes	D0	1.5 -0	±0.1
Distance		E	1.75	±0.1
Distance (cente	er to center)	F	3.5	±0.05
Distance (cente	er to center)	P2	2	±0.1
		A0	1.5	±0.1
		В0	2.4	±0.1
	NC 12 (0805)	K	1.4 max.	K ±0.1
	, ,			(size is adjustable)
Sizes of the				(K = t1 +0.2)
cavities		A0	1.95	±0.1
		В0	3.55	±0.1
	NC 20 (1206)	K	1.5 max.	K ±0.1
				(size is adjustable)
				(K = t1 +0.2)

QUANTITY PER REEL

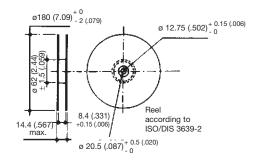
Туре	Suffix	Description	Qty Per Reel
NDOO	BA	Plastic tape (180mm diam. reel)	3,000 pcs
NB20 NC20	BE	Plastic tape (1/2 reel)	1,500 pcs
NCZU	BC	Plastic tape (330mm diam. reel)	10,000 pcs

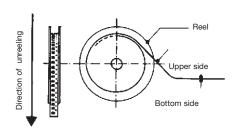
PACKAGING FOR AUTOMATIC INSERTION





AUTOMATIC INSERTION


8mm Paper Tape Packaging:


The mechanical and dimensional reel characteristics are in accordance with the IEC publication 286-3.

Designation	Symbol	Value	Tolerance
Tape width	W	8	0.1/+0.3
Tape thickness	T	1.1 max.	
Pitch of the sprocket holes	P ₀	4	±0.1
Diameter of the appropriate halos	D	1.5	±0.1
Diameter of the sprocket holes	D_0	-0/+0.1	±0.1
Distance	E ₁	1.75	±0.1
Distance (center to center)	F	3.5	±0.05
Distance (center to center)	P ₂	2	±0.05
Cover tape thickness	T ₁	0.10 max.	
Distance	E ₂	6.25 min.	
Distance	G	0.75 min.	
Component pitch 0805/0603	P ₁	4	±0.1
0402	P ₁	2	±0.1

QUANTITY PER REEL

Туре	Suffix	Description	Qty Per Reel
NB12	BB	Cardboard tape (180mm diam. reel)	4,000 pcs
NC12	BF	Cardboard tape (1/2 reel)	2,000 pcs
NB21 NC21	BD	Cardboard tape (330mm diam. reel)	10,000 pcs

SURFACE MOUNTING GUIDE

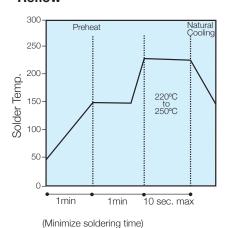
Chip Thermistor – Application Notes

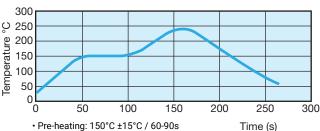
STORAGE

Good solderability is maintained for at least twelve months, provided the components are stored in their "as received" packaging at less than 40°C and 70% RH.

SOLDERABILITY / LEACHING

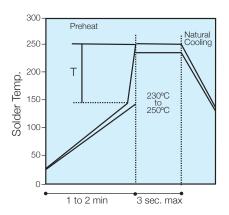
Terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at $235 \pm 5^{\circ}$ C for 2 ± 1 seconds.


Terminations will resist leaching for at least the immersion times and conditions recommendations shown below.


	P/N	Termination Type	Solder Tin/ Lead	Solder Temp °C	Immersion Time Seconds
	NC	AgPdPt	60/40	260 ± 5	15 max
1	NB	Nickel Barrier	60/40	260 ± 5	30 ± 1

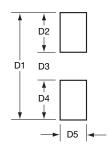
NB products are compatible with a wide range of soldering conditions consistent with good manufacturing practice for surface mount components. This includes Pb free reflow processes with peak temperatures up to 270°C. Recommended profiles for reflow and wave soldering are shown below for reference.

NC products are recommended for lead soldering application or gluing techniques.


Reflow

- Max. Peak Gradient: 2.5°C/s
- Peak Temperature: 245°C ±5°C
- Time at >230°C: 40s Max.

Wave



(Preheat chips before soldering) T/maximum 150°C

- a) The visual standards used for evaluation of solder joints will need to be modified as lead free joints are not as bright as with tin-lead pastes and the fillet may not be as large.
- b) Resin color may darken slightly due to the increase in temperature required for the new pastes.
- c) Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting pads are acceptable, but machine set up may need to be modified.

RECOMMENDED SOLDERING PAD LAYOUT

Dimensions in mm (inches)

REFLOW SOLDERING

Case Size	P/N	D1	D2	D3	D4	D5
0603	NB21	2.30 (.091)	0.80 (.031)	0.70 (.028)	0.80 (0.31)	0.75 (.030)
0805	NB12	3.00 (.118)	1.00 (.039)	1.00 (.039)	1.00 (.039)	1.25 (.049)
1206	NB20	4.00 (.157)	1.00 (.039)	2.00 (.079)	1.00 (.039)	2.50 (.098)

WAVE SOLDERING

Case Size	P/N	D1	D2	D3	D4	D5
0603	NB21	3.10 (.122)	1.20 (.047)	0.70 (.028)	1.20 (.047)	0.75 (.030)
0805	NB12	4.00 (.157)	1.50 (.059)	1.00 (.039)	1.50 (.059)	1.25 (.049)
1206	NB20	5.00 (.197)	1.50 (.059)	2.00 (.079)	1.50 (.059)	1.60 (.063)

NTC ACCURATE THERMISTORS

NP30 - NJ 28 - NI 24 - NK 20

High precision resistance and an outstanding ability to reproduce the sensibility index B, make these ranges of products the types of thermistors ideal for temperature measurement applications.

Leaded or unleaded, these small size and rapid response time

thermistors are able to meet the most accurate requirements.

FEATURES

- · High Accuracy
- · Fast thermal response
- · Commercial, Industrial and Automotive Applications
- · AEC-Q200 based qualification

OPTIONS

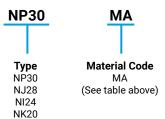
Consult factory for availability of options

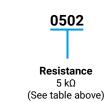
- · other nominal resistance values
- · other tolerances
- · controlled dimensions (e.g. reduced head size for NP30)
- alternative lead materials (e.g. steel, nickel)
- customized lead lengths, spacing, forming (kink) etc.
- · epoxy coating on leads (NP30)

APPLICATIONS

- Temperature measurement
- · Liquid level or flow detection
- · Alarms and fire detectors
- · HVAC and Refrigeration
- Fans
- Air intake temperature
- · Electric pump module
- · Water Temperature
- · Evaporator probe
- · and more

Types	NP 30 NJ 28		NI 24	NK 20		
Finish	Coated chip with epoxy+ tinned copper wires	Coated chip with phenolic resin + varnish + tinned copper wires	Coated chip with epoxy AWG30 insulated leads + Silver plated nickel wires	Chip for Wire bonding		
DIMENSIONS: millimeters (inches)	3.0 (.118) max 3.0 (.	2.8 (110) max 2.		Typical dimensions could differ for some modules		
Marking	On packaging only					
Operating temperature	-55°C to +150°C					
Tolerance on Rn (25°C)	±1%, ±2%, ±3%, ±5%					
Maximum dissipation at 25°C	0.16 W					
Thermal dissipation factor	4 mW/°C	3 mW/°C	1.5 mW/°C	2 mW/°C		
Thermal time constant 9 s		8 s	16 s	6 s		
Response time	<2s					




NTC ACCURATE THERMISTORS

NP30 - NJ 28 - NI 24 - NK 20

HOW TO ORDER

H (±3%)

J (±5%)

- -: Bulk CA: Ammopack, H=16mm* CB: Tape & Reel, H=16mm* CC: Tape & Reel, H=19mm* CD: Tape & Reel, H=19mm*

*Available for NP30 and NJ28 only (See table page 25)

TABLE OF VALUES-NP30-NJ28-NI24-NK20

AVX PN	Rn at 25°C (Ω)	Available Rn Tol at 25°C	Material Code	B25/85 (K)	at 25°C (%/°C)
N JA0501	500	F, G, H, J	JA	3564±1%	-3.91
NJA0102	1,000	F, G, H, J	JA	3564±1%	-3.91
N JA0202	2,000	F, G, H, J	JA	3564±1%	-3.91
NKA0202	2,000	F, G, H, J	KA	3625±1%	-4.38
NJA0212	2,100	F, G, H, J	JA	3564±1%	-3.91
NMA0222	2,200	F, G, H, J	MA	3965±0.5%	-4.38
NME0222	2,200	F, G, H, J	ME	3975±0.5%	-4.40
NMA0272	2,700	F, G, H, J	MA	3965±0.5%	-4.38
NME0272	2,700	F, G, H, J	ME	3975±0.5%	-4.40
NMN0272	2,700	F, G, H, J	MN	4077±0.5%	-4.47
NMA0282	2,800	F, G, H, J	MA	3965±0.5%	-4.38
NME0282	2,800	F, G, H, J	ME	3975±0.5%	-4.40
NMN0282	2,800	F, G, H, J	MN	4077±0.5%	-4.47
NMA0302	3,000	F, G, H, J	MA	3965±0.5%	-4.38
NME0302	3,000	F, G, H, J	ME	3975±0.5%	-4.40
NMN0302	3,000	F, G, H, J	MN	4077±0.5%	-4.47
NMA0392	3,900	F, G, H, J	MA	3965±0.5%	-4.38
NMN0392	3,900	F, G, H, J	ME	3975±0.5%	-4.40
NME0392	3,900	F, G, H, J	MN	4077±0.5%	-4.47
NMA0472	4,700	F, G, H, J	MA	3965±0.5%	-4.38
NME0472	4,700	F, G, H, J	ME	3975±0.5%	-4.40
NMN0472	4,700	F, G, H, J	MN	4077±0.5%	-4.47
NMA0502	5,000	F, G, H, J	MA	3965±0.5%	-4.38
NME0502	5,000	F, G, H, J	ME	3975±0.5%	-4.40
NMN0502	5,000	F, G, H, J	MN	4077±0.5%	-4.47
NMA0512	5,100	F, G, H, J	MA	3965±0.5%	-4.38
NME0512	5,100	F, G, H, J	ME	3975±0.5%	-4.40
NMN0512	5,100	F, G, H, J	MN	4077±0.5%	-4.47

___ = Insert Product type (NP30, NJ28, NI24, NK20)

^{--- =} Insert Tolerance and packaging code

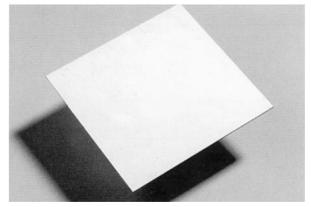
NTC ACCURATE THERMISTORS

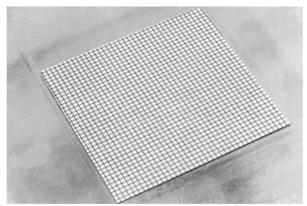
NP30 - NJ 28 - NI 24 - NK 20

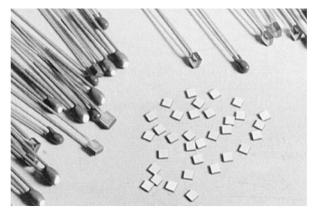
TABLE OF VALUES-NP30-NJ28-NI24-NK20

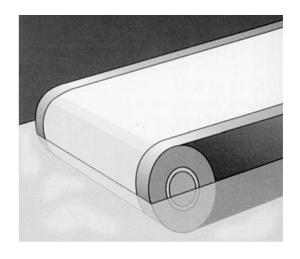
AVX PN	Rn at 25°C (Ω)	Available Rn Tol at 25°C	Material Code	B25/85 (K)	at 25°C (%/°C)
NMA0602	6,000	F, G, H, J	MA	3965±0.5%	-4.38
NME0602	6,000	F, G, H, J	ME	3975±0.5%	-4.4
NMN0602	6,000	F, G, H, J	MN	4077±0.5%	-4.47
NMA0702	7,000	F, G, H, J	MA	3965±0.5%	-4.38
NME0702	7,000	F, G, H, J	ME	3975±0.5%	-4.4
NMN0702	7,000	F, G, H, J	MN	4077±0.5%	-4.47
NMA0802	8,000	F, G, H, J	MA	3965±0.5%	-4.38
NME0802	8,000	F, G, H, J	ME	3975±0.5%	-4.4
NMN0802	8,000	F, G, H, J	MN	4077±0.5%	-4.47
NMA0103	10,000	F, G, H, J	MA	3965±0.5%	-4.38
N NA0103	10,000	F, G, H, J	NA	4100±1%	-4.6
NNA0123	12,000	F, G, H, J	NA	4100±1%	-4.6
N NA0153	15,000	F, G, H, J	NA	4100±1%	-4.6
NPA0203	20,000	F, G, H, J	PA	4235±1%	-4.8
NPA0253	25,000	F, G, H, J	PA	4235±1%	-4.8
NPA0303	30,000	F, G, H, J	PA	4235±1%	-4.8
NQA0473	47,000	F, G, H, J	QA	4250±1%	-4.8
NQA0503	50,000	F, G, H, J	QA	4250±1%	-4.8
NRA0104	100,000	F, G, H, J	RA	4380±1%	-4.9
NRA0154	150,000	F, G, H, J	RA	4380±1%	-4.9
NRA0204	200,000	F, G, H, J	RA	4380±1%	-4.9

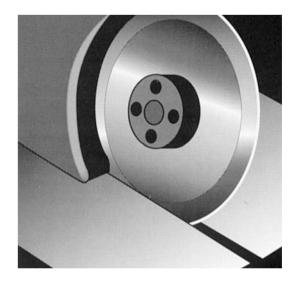
___ = Insert Product type (NP30, NJ28, NI24, NK20)

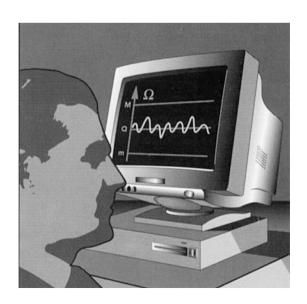

^{--- =} Insert Tolerance and packaging code


NTC THERMISTORS MANUFACTURING PROCESS









ND 03/06/09 - NE 03/06/09 - NV 06/09

APPLICATIONS

- ND or NE: Commerical, Industrial and Automotive Applications AEC-Q200 based Qual NV: Professional Applicationsl
- · Alarm and temperature measurement application
- · Temperature regulation application
- Level detection application
- · Compensation application and more

TECHNOLOGY

· ND: epoxy-phenolic resin coating

NE: epoxy resin coating (recommended for severe mounting conditions)

NV: epoxy varnish coating

· Leads: Radial copper wire tinned

· Marking: on package only for ND03 & NE03

ND/NE 06/09: Nominal resistance and tolerance for ±5%, ±10%

NV06/09: Nominal resistance and tolerance

· Delivery Mode: Bulk, reeled or ammopacked

PERFORMANCE CHARACTERISTICS

Tymes		General purpose	Professional		
Types	ND03 or NE03	ND06 or NE06	ND09 or NE09	NV06	NV09
Climatic category				55/125/56-434	55/125/56-434
Operating Temperature	−55 to +150°C	−55 to +150°C	−55 to +150°C	−55 to +150°C	−55 to +150°C
Tolerance on Rn (25°C)	330Ω to 1MΩ:± ±3*, 5, 10, 20% 1500Ω to 150 kΩ:± 3%	±3*, 5, 10, ±20%	±3*, 5, 10, ±20%	±2, 3, 5, ±10%	±2, 3, 5, ±10%
Maximum dissipation at 25°C	0.25 W	0.71 W	0.9 W	0.69 W	0.85 W
Thermal dissipation factor	5 mW/°C	7.1 mW/°C	9 mW/°C	6.9 mW/°C	8.5 mW/°C
Thermal time constant	10 s	22 s	30 s	18 s	30 s
Response time	< 3s				

STANDARDIZATION

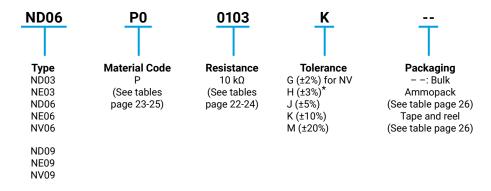
NV range: approved by NFC 93271

Type: TN115 A for NV06 TN116 for NV09

List: GAM-T1 List: LNZ

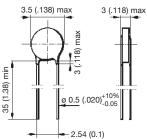
OPTIONS

Consult factory for availability of options:


- other nominal resistance values
- · other tolerances
- · alternative lead materials or lengths
- · controlled dimensions

^{*} Optional tolerance, please contact factory

ND/NE 03


HOW TO ORDER

^{*} Optional tolerance, please contact factory

TABLE OF VALUES ND03/NE03 TYPE

ND03/NE03

Part Number	Rn at 25°C (Ω)	Material Code	B (K) (B/B (1) ± 5%) (B/B (2) ± 3%)	α at 25°C (%/°C)
N_03J00681 N_03J00102	680 1,000	J	3480 (2)	- 3.9
N_03K00152 N_03K00222	1,500 2,200	К	3630 (2)	- 4.0
N_03L00272 N_03L00332	2,700 3,300	L	3790 (2)	- 4.2
N_03M00472 N_03M00682	4,700 6,800	М	3950 (2)	- 4.4
N_03N00103 N_03N00153	10,000 15,000	N	4080 (2)	- 4.6
N_03P00223 N_03P00333	22,000 33,000	Р	4220 (2)	- 4.7
N_03Q00473 N_03Q00683	47,000 68,000	Q	4300 (2)	- 4.7
N_03R00104 N_03R00154	100,000 150,000	R	4400 (2)	- 4.8
N_03S00224	220,000	S	4520 (2)	- 5.0
N_03T00334 N_03T00474	330,000 470,000	Т	4630 (2)	- 5.1
N_03U00105	1,000,000	U	4840 (2)	- 5.3

ND/NE/NV 06

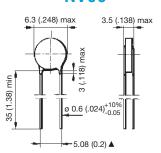


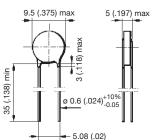
TABLE OF VALUES ND06/NE06/NV06

ND06/NE06

4 (.157) max 6.3 (.248) max 35 (1.38) min ø 0.6 (.024)^{+10%}_{-0.05} **--**5.08 (0.2) ▲

NV06

Part Number	Rn at 25°C (Ω)	Material Code	B (K) (B/B (1) ± 5%) (2) ± 3%)	α at 25°C (%/°C)
N_06J00151 N_06J00221	150 220	J	3480 (2)	- 3.9
N_06K00331 N_06K00471	330 470	К	3630 (2)	- 4.0
N_06L00681 N_06L00102	680 1,000	L	3790 (2)	- 4.2
N_06M00152	1,500	M	3950 (2)	- 4.4
N_06N00222 N_06N00332	2,200 3,300	N	4080 (2)	- 4.6
N_06P00472 N_06P00682 N_06P00103	4,700 6,800 10,000	Р	4220 (2)	- 4.7
N_06Q00153 N_06Q00223	15,000 22,000	Q	4300 (2)	- 4.7
N_06R00333	33,000	R	4400 (2)	- 4.8
N_06S00473 N_06S00683	47,000 68,000	S	4520 (2)	- 5.0
N_06T00104	100,000	Т	4630 (2)	- 5.1
N_06U00154 N_06U00224 N_06U00334	150,000 220,000 330,000	U	4840 (2)	- 5.3


For other resistance values, please consult us.

ND/NE/NV 09

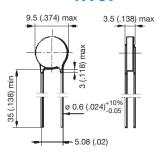


TABLE OF VALUES ND09/NE09/NV09

ND09/NE09

NV09

Part Number	Rn at 25°C (Ω)	Material Code	B (K) (B/B (1) ± 5%) (2) ± 3%)	α at 25°C (%/°C)
N_09J00680 N_09J00101	68 100	J	3480 (2)	- 3.9
N_09K00151 N_09K00221	150 220	К	3630 (2)	- 4.0
N_09L00331	330	L	3790 (2)	- 4.2
N_09M00471 N_09M00681	470 680	М	3950 (2)	- 4.4
N_09N00102 N_09N00152	1,000 1,500	N	4080 (2)	- 4.6
N_09P00222 N_09P00332	2,200 3,300	Р	4220 (2)	- 4.7
N_09Q00472 N_09Q00682	4,700 6,800	Q	4300 (2)	- 4.7
N_09R00103 N_09R00153	10,000 15,000	R	4400 (2)	- 4.8
N_09S00223	22,000	S	4520 (2)	- 5.0
N_09T00333 N_09T00473	33,000 47,000	Т	4630 (2)	- 5.1
N_09U00683 N_09U00104 N_09U00154	68,000 100,000 150,000	U	4840 (2)	- 5.3

Packaging for Automatic Insertion

PACKAGING AND KINK SUFFIXES

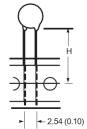
Tables below indicate the suffixes to specify when ordering to get the required kink and packaging. For devices on tape, it is necessary to specify the height (H or Ho) which is the distance between the tape axis (sprocket holes axis) and the seating plane on the printed circuit board. The following types can be ordered on tape either in AMMOPACK (fan folder) or on REEL in accordance with IEC 286-2.

- Straight leads:

H represents the distance between the sprocket holes axis and the bottom plane of component body (base of resin or base of stand off).

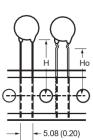
- Kinked leads and flat leads:

Ho represents the distance between the sprocket holes axis and the base on the knee (kinked leads) or the bottom of the flat part (flat leads).


Reel & Ammopack

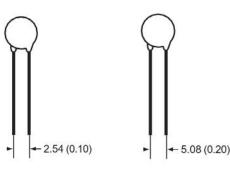
millimeters (inches)

minimeters (inches)						
Types	Suffix	H or Ho	Leads	Quantity/Size	Packaging	
	CA	16 ± 0.5 (0.630 ± 0.020)	Straight	3000	AMMOPACK	
ND/NE 03	СВ	16 ± 0.5 (0.630 ± 0.020)	Straight	3000	REEL	
& NJ28	CC	19.5 ± 0.5 (0.768 ± 0.020)	Straight	3000	AMMOPACK	
	CD	19.5 ± 0.5 (0.768 ± 0.020)	Straight	3000	REEL	
	CA	16 ± 0.5 (0.630 ± 0.020)	Straight	2000	AMMOPACK	
NP30	СВ	16 ± 0.5 (0.630 ± 0.020)	Straight	2000	REEL	
INF 30	CC	19.5 ± 0.5 (0.768 ± 0.020)	Straight	2000	AMMOPACK	
	CD	19.5 ± 0.5 (0.768 ± 0.020)	Straight	2000	REEL	
	DA	16 ± 0.5 (0.630 ± 0.020)	Straight	1500	AMMOPACK	
	DB	16 ± 0.5 (0.630 ± 0.020)	Straight	1500	REEL	
	DC	19.5 ± 0.5 (0.768 ± 0.020)	Straight	1500	AMMOPACK	
ND/NE/	DD	19.5 ± 0.5 (0.768 ± 0.020)	Straight	1500	REEL	
NV 06/09	DL	16 ± 0.5 (0.630 ± 0.020)	Kinked	1500	AMMOPACK	
	DM	16 ± 0.5) (0.630 ± 0.020)	Kinked	1500	REEL	
	DN	19.5 ± 0.5 (0.768 ± 0.020)	Kinked	1500	AMMOPACK	
	DP	19.5 ± 0.5 (0.768 ± 0.020)	Kinked	1500	REEL	


NTC

Type ND03 NE03 NJ28 NP30

NTC


Types ND/NE/NV 06/09

• Bulk

Type	Quantity/box
ND/NE03	3000
ND/NE06	1500
ND/NE09	1500
NV06	100
NV09	100
NI24 NJ28 NK20 NP30	1000

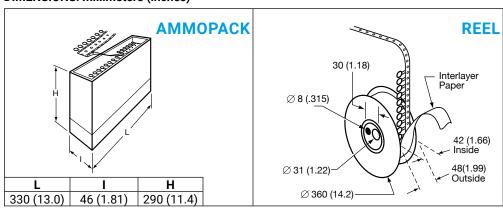
ND03 / NE03 NJ28 / NP30

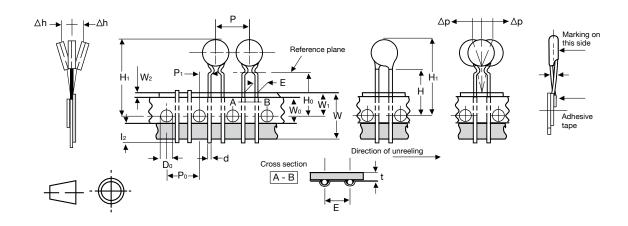
ND/NE/NV

06/09

AUTOMATIC INSERTION

NTC Disc Thermistors


TAPING CHARACTERISTICS


Missing components

A maximum of 3 consecutive components may be missing from the bandolier, surrounded by at least 6 filled positions. The number of missing components may not exceed 0.5% of the total per packing module.

The beginning and the end of tape exhibit 8 or 9 blank positions.

DIMENSIONS: millimeters (inches)

Value	Tolerance		Dimensions Characteristics
18	+1 / -0.5	W	Leading tape width
6	±0.3	W _o	Adhesive tape width
9	+0.75 / -0.5	W ₁	Sprocket hole position
3 max.		W ₂	Distance between the top of the tape and the adhesive
4	±0.2	D_0	Diameter of sprocket hole
16/19.5	±0.5	H₀	Distance between the tape axis and the seating plane of the component
		H ₁	Distance between the tape axis and the top of component body

Va	lue	Tolerance		Dimensions Characteristics
12	2.7	±0.2	P ₀	Sprocket holes pitch
2	54	±1	-	Distance between 21 consecutive holes 20 pitches
0	.7	±0.2	t	Total thickness of tape
2.54	5.08	+0.6 -0.1	Е	Lead spacing
5.08	3.85	± 0.7	P ₁	Distance between the sprocket hole axis and the lead axis
12	2.7	±1.0	Р	Spacing of components
0.5	0.6	±5%	d	Lead diameter
(0	±1.3	³P	Verticality of components
()	±2	³h	Alignment of components

NTC LEADLESS DISC THERMISTORS

This type of product is widely used in automotive and consumer applications.

They are assembled in custom-probes for sensing the temperature of liquids (water, oil, ...), gases or surface of any other component.

The metallization covers completely the surfaces of the thermistor.

The particularly flat and smooth surfaces ensure an excellent electrical and thermal contact under pressure.

Types	NR
Physical data (dim. in mm)	Metallization
Marking	On package only / On parts upon request
Operating temperature	-40°C to +200°C
Values and tolerances	Custom - designed products defined with: $D\pm D \ R_1\pm R_1/R_1 \ \text{at } T_1$ $E\pm E \ R_2\pm R_2/R_2 \ \text{at } T_2,\dots$

DESIGN OF THE THERMISTOR

Choice of the resistances

If the application is to measure the temperature around a defined point, a unique nominal resistance can be chosen (for example, among standard values of the ND range products presented on pages 20 to 24).

When it is required to measure the temperature over selected ranges T_1 – T_2 , T_2 – T_3 , ..., the corresponding resistance R_1 , R_2 , R_3 , ..., must be such that they can be located on the R (T) characteristic of an existing NTC material (for example among standard materials whose R (T) are displayed on pages 29 to 33).

The resistances must also be compatible with the resistivity of the material and the dimensions of the thermistor.

Choice of the tolerances

The precision of the temperature measurement determines the calculation of the tolerance on the resistance:

$$\Delta R/R = \alpha (\%/^{\circ}C). \Delta T (^{\circ}C)$$

For example, the NTC NR55--3049-99, using "N5" material (R (T) characteristic displayed on page 31), requires a precision of 1°C over the temperature range 110° C - 120° C.

The tolerances can be calculated:

$$\Delta R_{110^{\circ}C} / R_{110^{\circ}C} = 1^{\circ}C^{*} 2.91\%/^{\circ}C = 2.91\%$$

$$\Delta R_{120^{\circ}C} / R_{120^{\circ}C} = 1^{\circ}C^{*} 2.76\%/^{\circ}C = 2.76\%$$

HOW TO ORDER

^{*}For your specific requirements, please consult us.

NTC LEADLESS DISC THERMISTORS

We present below some examples of our custom - designed products as an illustration of the different ways to define products.

DIMENSIONS: millimeters (inches)

Types	D	E	Material Code	B (k)	R ₁ ± ΔR ₁ at T ₁	T ₁ (°C)	$R_2 \pm \Delta R_2$ at T_2	T ₂ (°C)	$R_3 \pm \Delta R_3$ at T_3	T ₃ (°C)
NR 55 – 3002 - 99	5.5 (.217) ± 0.5 (.020)	1.1 (.043) ± 0.4 (.016)	N5	4160	1230 Ω ± 7.5%	40	160 Ω ± 5%	96.5	-	-
NR 67 – 3068 - 99	6.7 (.264) ± 0.5 (.020)	1.7 (.067) ± 0.3 (.012)	N	4080	150 Ω ± 3.3%	100	51 Ω ± 5.3%	140	-	-
NR 55 – 3049 - 99	5.5 (.217) ± 0.5 (.020)	1.0 (.040) ± 0.2 (.008)	N5	4160	107 Ω ± 2.9%	110	80.6 Ω ± 2.8%	120	-	-
NR 55 – 3046 - 99	5.5 (.217) ± 0.5 (.020)	1.3 (.051) ± 0.4 (.016)	S	4520	48600 Ω± 7.5%	25	3210 Ω ± 5%	90	-	-
NR 49 - 3119 - 99	4.9 (.193) ± 0.3 (.012)	1.5 (.060) ± 0.4 (.016)	М	3950	840 Ω ± 10%	37.8	84 Ω ± 5%	104.4	-	-
NR 55 – 3114 - 99	5.5 (.217) ± 0.4 (.016)	1.0 (.040) ± 0.2 (.008)	Р	4220	5000 Ω ± 10%	25	-	-	-	-
NR 70 - 3121 - 99	7.0 (.275) ± 0.3 (.012)	1.2 (.047) ± 0.2 (.008)	L	3790	210 Ω ± 10%	40	40 Ω ± 7.5%	90	30 Ω ± 6.7%	100
NR 29 – 3107 - 99	2.9 (.014) ± 0.3 (.012)	1.7 (.067) ± 0.3 (.012)	K	3630	2050 Ω ± 6%	25	193 Ω ± 5.4%	96.5	-	-
NR 55 – 3122 - 99	5.5 (.217) ± 0.5 (.020)	1.5 (.060) ± 0.4 (.016)	J	3480	210 Ω ± 5%	25	-	-	-	-
NR 55 – 3126 - 99	5.5 (.217) ± 0.5 (.020)	1.0 (.040) ± 0.2 (.008)	Р	4220	3340 Ω ± 10%	25	264 Ω ± 7%	90	107 Ω ± 7%	120
NR 47 – 3116 - 99	4.7 (.185) ± 0.4 (.016)	1.2 (.047) ± 0.2 (.008)	R	4400	33000 Ω ± 2%	25	-	-	-	-
NR 49 - 3113 - 99	4.9 (.193) ± 0.3 (.012)	1.2 (.047) ± 0.2 (.008)	N	4080	1680 Ω ± 10%	40	382 Ω ± 6.7%	80	176 Ω ± 5%	105
NR 47 – 3101 - 99	4.6 (.181) ± 0.3 (.012)	1.4 (.055) ± 0.3 (.012)	J	3480	146 Ω ± 13%	40	22 Ω ± 10%	100	-	-
NR 55 – 3071 - 99	5.8 (.228) ± 0.3 (.012)	1.0 (.040) ± 0.2 (.008)	L	3790	262 Ω ± 8.7%	40	120 Ω ± 10%	60	35.5 Ω ± 7.8%	100
NR 61 - 3063 - 99	6.1 (.240) ± 0.3 (.012)	1.5 (.060) ± 0.3 (.012)	N	4080	760 Ω ± 9.2%	50	130 Ω ± 8.5%	100	56.6 Ω ± 8.5%	130
NR 67 – 3053 - 99	6.7 (.264) ± 0.4 (.016)	1.7 (.067) ± 0.3 (.012)	N	4080	540 Ω ± 11%	60	144 Ω ± 7%	100	-	-
NR 50 - 3048 - 99	5.0 (.197) ± 0.5 (.020)	1.5 (.060) ± 0.5 (.020)	J	3480	233 Ω ± 10%	25	13.3 Ω ± 7%	121	-	-
NR 60 - 3021 - 99	6.0 (.236) ± 0.5 (.020)	3.2 (.125) ± 0.3 (.012)	Р	4220	3640 Ω ± 3%	40	457 Ω ± 3%	96.5	-	-
NR 55 – 3016 - 99	5.5 (.217) ± 0.5 (.020)	1.1 (.043) ± 0.4 (.016)	Q	4300	5500 Ω ± 9%	40	650 Ω ± 7.7%	96.5	-	-

Resistance - Temperature characteristics: pages 29 to 33.

Т	Material B(K)				
(°C)		13250			
()	R(T) / R25	TF (%)	α (%/°C)		
-55	42.35	21.9	-5.98		
-50	31.48	20.0	-5.78		
-45	23.63	18.1	-5.59		
-40	17.91	16.3	-5.41		
-35 -30	13.70	14.6	-5.23		
-30	10.58	13.1	-5.06		
-25	8.232	11.6	-4.90		
-20	6.460	10.1	-4.74		
-15	5.110	8.8	-4.59		
-10	4.072	7.5	-4.45		
-5	3.268	6.3	-4.31		
0	2.641	5.1	-4.18		
5	2.148	4.0	-4.05		
10	1.759	2.9	-3.92		
15	1.449	1.9	-3.81		
20 25 30	1.200	0.9	-3.69 -3.58		
25	1.000	0.0	-3.58		
30	0.8377	0.9	-3.48		
35	0.7054	1.8	-3.38		
40	0.5969	2.6 3.5 4.3	-3.28		
45	0.5076	3.5	-3.19		
50	0.4336	4.3	-3.19 -3.10		
55	0.3720	5.1 5.9	-3 01		
60	0.3206 0.2774	5.9	-2.93 -2.85		
65	0.2774	6.6	-2.85		
70	0.2410	7.4	-2//		
75	0.2102 0.1839	8.1	-2.70 -2.63 -2.56		
80	0.1839	8.8	-2.63		
85	0.1616	9.5	-2.56		
90	0.1424	10.2	-2.49		
95	0.1259	10.9	-2.43		
100	0.1117	11.5 12.2	-2.36 -2.30		
105	0.09938	12.2	-2.30		
110	0.08869	12.8	-2.25		
115	0.07938	13.4	-2.19 -2.14		
120	0.07124	14.0	-2.14		
125	0.06410	14.6	-2.08		
130	0.05783	15.2	-2.03		
135	0.05230	15.7	-1.98		
140	0.04741	16.3	-1.94		
145	0.04308	16.8	-1.89		
150	0.03924	17.4	-1.85		

Т	Material B(K)				
(°C)	D/E) / DOE	J-J5 3480	(0: (0.0)		
	R(T) / R25	TF (%)	α (%/°C)		
- <u>55</u>	51.75	20.5	-6.23		
-50	37.98	17.7 15.2	-6.03		
-45	28.15	15.2	-5.84		
-40	21.07	13.0	-5.65		
-35 -30	15.91	11.0	-5.48		
-30	12.13	9.3	-5.31		
-25	9.321	7.8	-5.15		
-20	7.222	6.4	-4.99		
-15	5.640	5.2	-4.84		
-10	4.438	4.2	-4.69		
-5	3.517	6.4 5.2 4.2 3.3 2.5	-4.55		
0	2.807	2.5	-4.42		
5	2.255	1.8	-4.29		
10	1.824	1.2	-4.17		
15	1.484	0.7 0.3	-4.05		
20	1.215	0.3	-3.93		
25	1.0000	0.0	-3.82		
30	0.8278	0.3	-3.71		
35	0.6889	0.7	-3.61		
40	0.5763	1.1 1.5	-3.51		
45	0.4845	1.5	-3.41		
50	0.4092	2.0	-3.32		
55	0.3472 0.2960	2.5 3.0	-3.23 -3.15		
60	0.2960	3.0	-3.15		
65	0.2533	3.5	-3.06		
70	0.2177	4.1	-2.98 -2.90		
75	0.2177 0.1879	4.7	-2.90		
80	0.1628	5.3	-2.83		
85	0.1415	5.9	-2.76		
90	0.12349	6.5	-2.69		
95	0.10813	7.1 7.7	-2.62 -2.55		
100	0.09499	7.7	-2.55		
105	0.08372	8.4	-2.49		
110	0.07402	9.0	-2.43		
115	0.06564	9.7	-2.37		
120 125	0.05837	10.3	-2.37 -2.31 -2.26		
125	0.05206	11.0	-2.26		
130	0.04656	11.6	-2.21		
135	0.04175	12.3 13.0	-2.15		
140	0.03753	13.0	-2.10		
145	0.03382	13.6	-2.06		
150	0.03055	14.3	-2.01		

Т	Material B(K)				
(°C)		K 3630	(2.12.2)		
	R(T) / R25	TF (%)	a (%/°C)		
-55	56.27	21.4	-6.25		
-50	41.22	18.5	-6.06		
-45	30.48	15.9 13.6	-5.89		
-40	22.74	13.6	-5.71		
-35	17.11	11.5	-5.55		
-30	12.98	9.7 8.1	-5.39 -5.24 -5.09		
-25	9.931	8.1	-5.24		
-20	7.655	6.7	-5.09		
-15	5.945	5.4	-4.95		
-10	4.651	4.4	-4.81		
-5	3.663	3.4 2.6	-4.67		
0	2.905	2.6	-4.54		
5	2.319	1.9 1.3	-4.42		
10	1.862	1.3	-4.30		
15	1.505	0.8	-4.18		
20 25	1.223	0.3	-4.07		
25	1.0000	0.0	-3.96		
30	0.8219	0.3	-3.85		
35	0.6792	0.7	-3.75		
40	0.5641	1.1	-3.65 -3.55		
45	0.4708	1.6	-3.55		
50	0.3949	2.1 2.6	-3.46 -3.37		
55	0.3327	2.6	-3.37		
60	0.2816 0.2393	3.1	-3.28 -3.20		
65 70	0.2393	3.1 3.7 4.3 4.9	-3.20 -3.12		
75	0.2043	4.3	-3.12		
80	0.1751 0.1506	5.5	-3.04 -2.96		
85		5.5	-2.90		
90	0.1301 0.1128	6.1	-2.89 -2.82		
95		6.8	-2.82		
100	0.09811 0.08564	7.4 8.1	-2.75		
105	0.08504	8.7	-2.61		
110	0.06591	9.4	-2.01		
115	0.05809	9. 4 10.1	-2.55 -2.49		
120	0.05136	10.1	-2.49		
125	0.03130	11.5	-2.43		
130	0.04049	12.2	-2.37 -2.32		
135	0.03611	12.2	-2.26		
140	0.03228	12.8 13.5	-2.21		
145	0.03220	14.2	-2.16		
150	0.02600	14.9	-2.11		
100	5.02000	11.2	<u> </u>		

Т		Material B(K)	
(°C)	D/T) / DOE	KA 3625	(0, (0.0)
	R(T) / R25	TF (%)	α (%/°C)
- <u>55</u>	61.22	7.1	-6.55
-50	44.25 32.34 23.88	6.1	-6.33
-45	32.34	5.3	-6.12 -5.92
-40	23.88	4.5	-5.92
-35 -30	17.81 13.41	3.8 3.2	-5.73 -5.54
-30	13.41	3.2	-5.54
-25	10.19	2.7	-5.37
-20	7.815	2.2 1.8	-5.20
-15	6.041	1.8	-5.04
-10	4.707	1.5	-4.89
-5	3.696	1.1	-4.74
<u>0</u> 5	3.696 2.923 2.329	0.9	-4.60
5	2.329	0.6	-4.46
10	1.867	0.4	-4.33
15	1.867 1.507 1.224	0.3	-4.33 -4.21 -4.09
20	1.224	0.1	-4.09
25 30	1.0000	0.0	-3.97 -3.86
30	0.8217	0.1	-3.86
35	0.6788	0.2	-3.75
40	0.5638	0.4	-3.65 -3.55
45	0.4707	0.5	-3.55
50	0.3948	0.7	-3.46
55	0.3328	0.9	-3.37
60	0.2817	1.0	-3.28
65	0.2396 0.2046	1.2	-3.19
70	0.2046	1.4	-3.11
75	0.1754	1.6	-3.03
80	0.1510	1.8	-2 96
85	0.1305	2.0	-2.96 -2.88
90	0.1131	2.0 2.3	-2 81
95	0.09844	2.5	-2.74
100	0.08596	2.5 2.7 2.9	-2.74 -2.68
105	0.07530	2.7	-2.61
110	0.06618	3.1	-2.55
115	0.05833	3.1 3.4	-2.55 -2.49
120	0.05157	3.6	-2.43
125	0.04573	3.8	-2.43
130	0.04065	4.0	-2.38 -2.32
135	0.03624	4.3	-2.27
140	0.03024	4.5	-2.22
			-2.22
1/15	0.02002	17	-2 17

Т	Material B(K)				
(°C)		KC 3470			
	R(T) / R25	TF (%)	a (%/°C)		
-55	60.08	34.0	-7.00		
-50	43.19	29.4	-6.71		
-45	31.42 23.13	25.3 21.6	-6.44		
-40	23.13	21.6	-6.18		
-35	17.22	18.4	-5.94		
-30	12.95	15.5	-5.71		
-25	9.842	12.9 10.7	-5.49		
-20	7.550	10.7	-5.29		
-15	5.845	8.7 6.9	-5.10		
-10	4.564	6.9	-4.91		
-5	3.594	5.4	-4.74		
0	2.853 2.281	4.1 3.0	-4.58		
5	2.281	3.0	-4.42		
10	1.838	2.0	-4.27		
15	1.491	1.2 0.5	-4.13		
20	1.217	0.5	-4.00		
25	1.0000	0.0	-3.90		
30	0.8267	0.5	-3.74		
35	0.6873	1.1	-3.63		
40	0.5747	1.8	-3.52		
45	0.4830	2.5 3.3	-3.41 -3.31		
50	0.4081	3.3	-3.31		
55	0.3465	4.1	-3.21		
60	0.2955	5.0	-3.12		
65	0.2532	5.9	-3.03		
70	0.2179	6.8	-2.94		
75	0.1883	7.8	-2.86		
80	0.1634	8.7	-2.78		
85	0.1423	9.7	-2.71		
90	0.1244	10.8	-2.63		
95	0.10915	11.8	-2.56		
100	0.09608	12.9	-2.50		
105	0.08486	13.9	-2.43 -2.37 -2.31		
110	0.07519	15.0	-2.37		
115	0.06683	16.1	-2.31		
120	0.05957	17.2	-2.25		
125	0.05325	18.3	-2.20		
130	0.04774	19.4	-2.14		
135	0.04290	20.5	-2.09		
140	0.03866	21.6	-2.04		
145	0.03492	22.7	-1.99		

Т	Material B(K)				
(°c)		KC 3470			
	R(T) / R25	TF (%)	α (%/°C)		
-55	82.54	22.3	-7.12		
-50	58.03	19.3	-6.87		
-45	41.31	16.6	-6.63		
-40	29.75	14.2	-6.40		
-35	21.68	12.0	-6.18		
-30	15.97	10.1	-5.98		
-25	11.88	8.5	-5.78		
-20	8.931	7.0	-5.59		
-15	6.777	5.7	-5.40		
-10	5.188	4.5	-5.23		
-5	4.007	3.6	-5.06		
0	3.120	2.7	-4.90		
5	2.449	2.0	-4.75		
10	1.937	1.3	-4.60		
15	1.543	0.8	-4.46		
20	1.238	0.4	-4.33		
25	1.0000	0.0	-4.20		
30	0.8128	0.3	-4.07		
35	0.6648	0.7	-3.95		
40	0.5469	1.2	-3.84		
45	0.4525	1.6	-3.73		
50	0.3764	2.2 2.7	-3.62		
55	0.3148	2.7	-3.52		
60	0.2646	3.3	-3.42		
65	0.2235	3.8	-3.33		
70	0.1896	4.5	-3.24		
75	0.1616	5.1	-3.15		
80	0.1383	5.7	-3.07		
85	0.1189	6.4	-2.98		
90	0.1026	7.1	-2.91		
95	0.08888	7.7	-2.83		
100	0.07728	8.4	-2.76		
105	0.06744	9.1	-2.69		
110	0.05905	9.8	-2.62		
115	0.05188	10.5	-2.56		
120	0.04572	11.3	-2.49		
125	0.04042	12.0	-2.43		
130	0.03585	12.7	-2.37		
135	0.03188	13.4	-2.32 -2.26		
140	0.02843	14.1			
145	0.02542	14.8	-2.21		
150	0.02279	15.6	-2.16		

т	T Material B(K)				
(°C)		L2 3805			
	R(T) / R25	TF (%) 22.4	α (%/°C)		
-55	62.45	22.4	-6.41		
-50	45.40	19.3	-6.22		
-45	33.33 24.70	16.6	-6.03		
-40	24.70	14.2	-5.85		
-35	18.47	12.1 10.2	-5.68		
-30	13.92	10.2	-5.52		
-25	10.58	8.5	-5.36		
-20	8.110	7.0	-5.21		
-15	6.260	5.7	-5.07		
-10	4.867	4.6	-4.93		
-5	3.810	3.6	-4.80		
0	3.003	2.7	-4.67		
5	2.382	2.0	-4.55		
10	1.901	1.3	-4.43		
15	1.526	0.8	-4.31		
20 25 30	1.232	0.4	-4.20		
25	1.0000	0.0	-4.10		
30	0.8161	0.3	-4.00		
35	0.6694	0.7	-3.90		
40	0.5518	1.2	-3.80		
45	0.4570	1.7 2.2 2.7	l -3.71 l		
50	0.3802	2.2	-3.62 -3.53		
55	0.3178	2.7	-3.53		
60	0.2667 0.2248	3.3	-3.45 -3.37 -3.29 -3.22 -3.14		
65	0.2248	3.9	-3.37		
70	0.1902	3.9 4.5	-3.29		
75	0.1615	5.1	-3.22		
80	0.1377	5.8	-3.14		
85	0.1179	6.4	-3.07		
90	0.1012	7.1	-3.00		
95	0.08721	7.8	-2.94		
100	0.07539	8.5 9.2	-2.87 -2.81		
105	0.06538	9.2	-2.81		
110	0.05688	9.9	-2.75		
115	0.04963	10.6	-2.69		
120	0.04343	11.3	-2.69 -2.63		
125	0.03812	12.0	-2.58		
130	0.03354	12.7	-2.53		
135	0.02960	13.5	-2.47		
140	0.02618	14.2	-2.42		
145	0.02322	14.9	-2.37		
150	0.02064	15.6	-2.33		

Т	Material B(K)				
(°C)		M 3950			
	R(T) / R25	TF (%)	α (%/°C)		
-55	99.59	15.6	-7.42		
-50	68.97	14.3	-7.16		
-45	48.40	12.9	-6.91		
-40	34.38	11.7	-6.67		
-35	24.71	10.5	-6.45		
-30	17.97	9.4	-6.23		
-25	13.20	8.3 7.3	-6.02		
-20	9.804	7.3	-5.82		
-15	7.352	6.3	-5.63		
-10	5.565 4.251	5.4	-5.45		
-5	4.251	4.5	-5.28		
0	3.275	3.7	-5.11		
5	2.544	3.7 2.9 2.1	-4.95		
10	1.992	2.1	-4.80		
15	1.572	1.4	-4.65		
20	1.249	0.7	-4.51		
25	1.0000	0.0	-4.38		
30	0.8057	0.7	-4.25		
35	0.6534	1.3	-4.12		
40	0.5331	1.9 2.5 3.1	-4.00		
45	0.4376	2.5	-3.89		
50	0.3612	3.1	-3.77		
55	0.2998	3.7 4.3	-3.67		
60	0.2501	4.3	-3.57		
65	0.2097	4.8	-3.47		
70	0.1767	5.3	-3.37		
75	0.1496	5.9	-3.28		
80	0.1272	6.4	-3.19		
85	0.1087	6.9	-3.11		
90	0.09320	7.4	-3.03		
95	0.08025	7.8	-2.95 -2.87		
100	0.06937	8.3	-2.87		
105	0.06019	8.8	-2.80		
110	0.05242	9.2	-2.73		
115	0.04580	9.6	-2.66		
120	0.04016	10.1	-2.60 -2.53		
125	0.03532	10.5	-2.53		
130	0.03117	10.9	-2.47		
135	0.02758	11.3	-2.41		
140	0.02448	11.7	-2.36		
145	0.02179	12.1 12.4	-2.30 -2.25		
150	0.01945	12.4	-2.25		

Т	Material B(K)				
(°C)		MA 3965	(2.12.2)		
	R(T) / R25	TF (%)	α (%/°C)		
- <u>55</u>	101.09	2.47	-7.49		
-50	69.81	2.26	-7.22		
-45	48.87	2.06	-6.96		
-40	34.65	1.87	-6.71		
-35	24.87	1.69	-6.48		
-30	18.06	1.52 1.35	-6.26		
-25	13.259	1.35	-6.05		
-20	9.837	1.19	-5.84		
-15	7.372	1.04	-5.65		
-10	5.578	0.89	-5.47		
-5	4.259 3.280	0.75	-5.29		
0	3.280	0.61	-5.12		
5	2.548	0.48	-4.96		
10	1.994	0.35 0.23	-4.81		
15	1.573	0.23	-4.66		
20	1.250	0.11	-4.52		
25	1.0000	0.00	-4.38		
30	0.8054	0.11	-4.25		
35	0.6528	0.22 0.32	-4.13		
40	0.5324	0.32	-4.01		
45	0.4368	0.42	-3.90		
50	0.3603	0.52	-3.79		
55	0.2989	0.61	-3.68		
60	0.2492 0.2088	0.70	-3.58		
65	0.2088	0.79	-3.48		
70	0.1758	0.88	-3.39		
75	0.1487	0.96	-3.30		
80	0.1263	1.04	-3.21		
85	0.1078	1.12 1.20	-3.13		
90	0.0923	1.20	-3.05		
95	0.0794	1.27 1.35	-2.97		
100	0.06857	1.35	-2.90		
105	0.05942	1.42	-2.83		
110	0.05167	1.49	-2.76 -2.69		
115	0.04509	1.55	-2.69		
120	0.03948	1.62	-2.62		
125	0.03467	1.68	-2.56		
130	0.03055	1.75	-2.50		
135	0.02699	1.81	-2.44		
140	0.02392	1.87	-2.39		
145	0.02125	1.93	-2.33		
150	0.01894	1.98	-2.28		

		M-4: D///	
Т	Material B(K)		
(°C)		MC 3910	
	R(T) / R25	TF (%)	α (%/°C)
-55	100.6	23.0	-7.56 -7.27
-50	69.29	19.9	-7.27
-45	48.40	17.1	-7.00
-40	34.27 24.57	14.6	-6.75
-35	24.57	12.4	-6.50
-30	17.83	10.5	-6.27
-25	13.09	8.7	-6.05
-20	9.71	7.2	-5.84
-15	7.282 5.514	5.9	-5.64
-10	5.514	4.7	-5.45
-5	4.215	3.7	-5.27
0	3.250 2.528	2.8 2.0	-5.10
5	2.528	2.0	-4.93
10	1.982	1.4	-4.77
15	1.567	0.8	-4.62
20	1.247	0.4	-4.48
25	1.0000	0.0	-4.34
30	0.8072	0.4	-4.21
35	0.6559	0.8	-4.08
40	0.5362	1.2 1.7	-3.96
45	0.4410	1.7	-3.85
50	0.3647	2.2	-3.74
55	0.3033		-3.63
60	0.2535	2.8 3.4	-3.53
65	0.2130	4.0	-3.43
70	0.1798	4.6	-3.34
75	0.1525	5.2	-3.25
80	0.1300	5.9	-3.16
85	0.1112	6.6	-3.08
90	0.09552	7.3	-2.99
95	0.08239	8.0	-2.92
100	0.07133	8.7	-2.84
105	0.06199	9.4	-2.77
110	0.05406	10.1	-2.70
115	0.03400	10.1	-2.63
120	0.04751	11.6	-2.57
125	0.03658	12.3	-2.57 -2.51
130	0.03030	13.1	-2.51 -2.45
135		13.8	-2.45
140	0.02863	13.8	
	0.02544		-2.33
145	0.02267	15.3	-2.28

Т	Material B(K)			
(°C)		ME 3975		
(°C)	R(T) / R25	TF (%)	α (%/°C)	
-55	103.9	2.47 2.26	-7.56	
-50	71.53	2.26	-7.28	
-45	49.94 35.32	2.06	-7.01	
-40	35.32	1.87	-6.76	
-35	25.29	1.69	-6.53	
-30	18.32	1.52 1.35	-6.30	
-25	13.43	1.35	-6.08	
-20	9.945	1.19	-5.88	
-15	7.440	1.04	-5.68	
-10	5.621 4.286	0.89	-5.50	
-5	4.286	0.75	-5.32	
0	3.297 2.557	0.61	-5.15	
5	2.557	0.48	-4.98	
10	2.000	0.35	-4.83	
15	1.576	0.23	-4.68	
20	1.251	0.11	-4.54	
25	1.0000	0.00	-4.40	
30	0.8048	0.11 0.22 0.32	-4.27	
35	0.6519	0.22	-4.14	
40	0.5313	0.32	-4.02	
45	0.4356	0.42 0.52	-3.91	
50	0.3591	0.52	-3.80	
55	0.2977	0.61	-3.69	
60	0.2481 0.2078	0.70	-3.59	
65	0.2078	0.79	-3.49	
70	0.1749	0.88	-3.40	
75	0.1479	0.96	-3.31 -3.22	
80	0.1256	1.04	-3.22	
85	0.1071	1.12	-3.14	
90	0.09175	1.20	-3.06 -2.98	
95	0.07890	1.20 1.27 1.35	-2.98	
100	0.06810	1.35	-2.90	
105	0.05900	1.42	-2.83	
110	0.05130	1.49	-2.76	
115	0.04476	1.55	-2.69	
120	0.03918	1.62	-2.63 -2.57	
120 125 130	0.03441	1.68	-2.5/	
130	0.03031	1.75	-2.50	
135	0.02678	1.81	-2.45	
140	0.02373	1.87	-2.39	
145	0.02108	1.93	-2.34	

Т	Material B(K)			
(°C)		M4 4400	(2.12.2)	
, ,	R(T) / R25	TF (%)	α (%/°C)	
-55	98.22	23.5	-7.38	
-50	68.17	20.3	-7.12	
-45	47.92	17.5	-6.88	
-40	47.92 34.11	14.9 12.7	-6.64	
-35	24.57	12.7	-6.42	
-30	17.89	10.7	-6.20	
-25	13.17	8.9	-6.00	
-20	9./90	7.4	-5.80	
-15	7.349	6.0	-5.62	
-10	5.568	4.8	-5.44	
-5	4.256	3.8	-5.27	
0	3.280	2.8 2.1	-5.11	
5	2.549	2.1	-4.95	
10	1.996	1.4	-4.80	
15	1.574	0.8	-4.66	
20	1.250	0.4	-4.52	
25 30	1.0000	0.0	-4.39	
	0.8049	0.4	-4.27	
35	0.6519	0.8	-4.15	
40	0.5311	1.2	-4.03	
45	0.4352	1.2 1.7	-3.92	
50	0.3586	2.3	-3.81	
55	0.2970	2.3 2.8	-3.71	
60	0.2472	3.4	-3.61	
65	0.2068	4.1	-3.52 -3.42	
70	0.1738	4.7	-3.42	
75	0.1468	5.4	-3.34	
80	0.1245	6.0	-3.25	
85	0.1060	6.7	-3.17	
90	0.09060	7.4 8.2	-3.09 -3.01	
95	0.07776	8.2	-3.01	
100	0.06700	8.9	-2.94	
105	0.05793	9.6	-2.87	
110	0.05026	10.4	-2.80	
115	0.04376	11.1	-2.74 -2.67	
120	0.03822	11.9	-2.67	
125	0.03349	12.6	-2.61	
130	0.02944	13.4	-2.55	
135	0.02595	14.1	-2.49	
140	0.02294	14.9	-2.44	
145	0.02033	15.6	-2.38	
150	0.01807	16.4	-2.33	

Т		Material B(K)	
(%)		MN 4077	
(°C)	R(T) / R25	TF (%)	α (%/°C)
-55	103.56	2.54	-7.39
-50	71 79	2.32	-7.14
-45	50.39	2.12	-6.90
-40	50.39 35.79	1.92	-6.68
-35	25.71	1.74	-6.46
-30	18.67	2.12 1.92 1.74 1.56	-6.25
-25	13.70	139	-6.06
-20	10.15	1.22	-5.87
-15	7.59	1.22 1.06	-5.68
-10	5.73	0.91	-5.51
-5	4.36 3.35	0.77	-5.34
0	3.35	0.63	-5.18
0 5	1 2.59	0.49	-5.03
10	2.02 1.59	0.36 0.24	-4.88
15	1.59	0.24	-4.74
20	1.26	0.12	-4.60
20 25 30	1.26 1.00	0.12 0.00	-4.47
30	0.80	0.11	-4.35
35	0.65	0.22	-4.23
40	0.52	0.22 0.33	-4.11
45	0.43 0.35	0.43 0.53	-4.00 -3.89
50	0.35	0.53	-3.89
55	0.29	0.63	-3.79
60	0.24 0.20	0.72	-3.69
65	0.20	0.81	-3.59
70	0.17	0.90	-3.50
75	0.14	0.99	-3.41 -3.32
80	0.12	1.07	-3.32
85	0.10	1.15	-3.24
90	0.09	1.23 1.31	-3.16
95	0.07	1.31	-3.08
100	0.06	1.38	-3.00
105	0.05	1.46	-3.00 -2.93
110	0.05	1.53	-2.86
115	0.04	1.60	-2.79
120	0.04	1.67	-2.73
125	0.03	1.73	-2.66 -2.60
130	0.03	1.80	-2.60
135	0.02	1.86	-2.54
140	0.02	1.92	-2.49
145	0.02	1.98	-2.43
150	0.02	2.04	-2.38

Т	Material B(K)		
(°C)		N 4080	
	R(T) / R25	TF (%)	α (%/°C)
-55	110.1	24.0	-7.50 -7.25
-50	75.89	20.7	-7.25
-45	52.97	17.8	-7.01
-40	37.42	15.2	-6.78
-35	26.75	12.9 10.9	-6.56
-30	19.33	10.9	-6.35
-25	14.11	9.1	-6.14
-20	10.41	7.5	-5.95
-15	7.758	6.1	-5.76
-10	5.834	4.9	-5.58
-5	4.426	3.8	-5.41
<u>0</u> 5	3.387	2.9 2.1	-5.24
	2.614	2.1	-5.08
10	2.033	1.4	-4.93
15	1.593	0.9	-4.78
20	1.258	0.4	-4.64
25	1.0000	0.0	-4.51
30	0.8004	0.4	-4.37
35	0.6449	0.8	-4.25
40	0.5228	1.3	-4.13
45	0.4264	1.8 2.3	-4.01
50	0.3497	2.3	-3.90
55	0.2885	2.9	-3.79
60	0.2392	3.5	-3.68
65	0.1994	41	-3.58
70	0.1671	4.1 4.8	-3.49
75	0.1406	5.5	-3.49 -3.39
80	0.1189	6.2	-3.30
85	0.1010	6.9	-3.22
90	0.08616	7.6	-3.13
95	0.07381	8.3	-3.05
100	0.06347	9.1	-2.97
105	0.05480	9.8	-2.97 -2.90
110	0.04748	10.6	-2.83
115	0.04129	11.3	-2.76
120	0.03603	12.1	-2.69
125	0.03155	12.9	-2.62
130	0.02771	12.9 13.7	-2.62 -2.56
135	0.02442	14.4	-2.50
140	0.02158	15.2	-2.44
145	0.01913	16.0	-2.38
150	0.01700	16.8	-2.33
100	3.01700	10.0	2.00

Т	Material B(K)		
(°C)	D/T) / DOE	NA 4100	(0, (0.0)
	R(T) / R25	TF (%)	α (<u>%/°C)</u>
55	109.5	8.0	-7.53
-50	75.44	6.9	-7.27
-45	52.64	6.0	-7.02
-40	37.19	5.1	-6.78
-35	26.59	4.3 3.7	-6.56
-30	19.22	3./	-6.34
-25	14.05	3.1	-6.14
-20	10.37	2.5	-5.94
-15	7.730	3.1 2.5 2.1 1.6	-5.75
-10	5.817	1.6	-5.57
-5	4.417	1.3	-5.40
Ō	3.382	1.0	-5.23
5	2.611	0.7	-5.08
10	2.032	0.5	-4.92
15	1.593	0.3	-4.78
20	1.258	0.1	-4.64
25	1.0000	0.0	-4.51
30	0.8003	0.1	-4.38
35	0.6446	0.3	-4.25
40	0.5224	0.4	-4.14
45	0.4258	0.6	-4.02
50	0.3490	0.8	-3.91
55	0.2877	1.0	-3.81
60	0.2383	1.2	-3.71 -3.61
65	0.1984	1.4	-3.61
70	0.1660	1.6	-3.51
75	0.1395	1.8	-3.42
80	0.1178	2.1	-3.34
85	0.09989	2.3 2.5	-3.25
90	0.08506	2.5	-3.17
95	0.07271	2.8 3.0 3.3	-3.09
100	0.06240	3.0	-3.02
105	0.05375	3.3	-2.94
110	0.04647	3.5	-2.87
115	0.04032	3.8	-2.81
120	0.03509	4.1	-2.74
125	0.03065	4.3	-2.68 -2.61
130	0.02685	4.6	-2.61
135	0.02359	4.8	-2.55
140	0.02079	5.1	-2.50
145	0.01837	5.4	-2.44
150	0.01628	5.6	-2.39

Т		Material B(K) NC 4080		
(°C)	R(T) / R25	TF (%)	α (%/°C)	
-55	105.4	24.0	-7.45	
-50	72.89	20.7	-7.20	
-45	51.04	17.8	-6.95	
-40	36.18	15.2	-6.72	
-35	25.94	12.9	-6.50	
-30	18.81	10.9	-6.29	
-25	13 78	9.1 7.5	-6.08	
-20	10.20 7.621 5.748	7.5	-5.89	
-15	7.621	6.1	-5.71	
-10	5.748	4.9	-5.53	
-5	4.373	3.8 2.9	-5.36	
0	4.373 3.355	2.9	-5.20	
5	2.595	2.1	-5.04	
10	2.023	1.4	-4.89	
15	2.023 1.588	0.9	-4.75	
20	1.256	0.4	-4.61	
25	1.0000	0.0	-4.48	
30	0.8014	0.4	-4.35	
35	0.6463	0.8	-4.23	
40	0.5243	1.3	-4.11	
45	0.4278	1.8	-4.00	
50	0.3510	2.3	-3.89	
55	0.3510 0.2896	2.3 2.9 3.5	-3.79	
60	0.2401	3.5	-3.69	
65	0.2001	4.1	-3.59 -3.50	
70	0.1675	4.8	-3.50	
75	0.1409	5.5	-3.41	
80	0.1190	6.2	-3.32	
85	0.1010	6.9	-3.24	
90	0.08605	7.6	-3.16	
95	0.07360	8.3	-3.08	
100	0.06319	9.1	-3.01	
105	0.05446	9.8	-2.94 -2.87	
110	0.04710	10.6	-2.87	
115	0.04087	11.3	-2.80	
120	0.03559	12.1	-2.73	
125	0.03109	12.9	-2.67	
130	0.02724	13.7	-2.61	
135	0.02394	14.4	-2.55	
140	0.02111	15.2	-2.49	
145	0.01866	16.0	-2.44	

т	Material B(K)			
(°C)		NE 4100		
	R(T) / R25	TF (%)	α (%/°C) -7.2 -7.0	
-55	97.27	24.1 20.8	-7.2	
-50	67.99	20.8	-7.0	
-45	48.08 34.39 24.85	17.9 15.3 13.0	-6.8	
-40 -35	34.39	15.3	-6.5	
-35	24.85	13.0	-6.3	
-30	18.15	11.0	-6.1	
-30 -25 -20	13.38	9.2 7.6	-6.0	
-20	9.960	7.6	-5.8	
-15	7.479	6.2 4.9	-5.6 -5.4	
-10	5.664	4.9	-5.4	
-5	4.325	3.8	-5.3	
0	3.328 2.581 2.016	2.9 2.1 1.4	-5.1 -5.0	
5	2.581	2.1	-5.0	
10	2.016	1.4	-4.9	
15	1.585	0.9	-4.7	
20	1.255	0.4	-4.6 -4.5	
25	1.0000	0.0	-4.5	
30	0.8017	0.4	-4.3 -4.2	
35	0.6466	0.8	-4.2	
40	0.5245	1.3	-4.1	
45	0.4278 0.3508	1.8 2.3 2.9	-4.0 -3.9 -3.8	
50	0.3508	2.3	-3.9	
55	0.2891	2.9	-3.8	
60	0.2394 0.1992	3.5 4.2 4.8	-3.7 -3.6	
65	0.1992	4.2	-3.6	
70	0.1666	4.8	-35	
75	0.1399	5.5	-3.4	
80	0.11794	6.2	-3.4	
85	0.09987	6.9	-3.4 -3.4 -3.3	
90	0.08491	5.5 6.2 6.9 7.6	-3.2 -3.1	
95	0.07246	8.4	-3.1	
100	0.06207	9.1	-3 1	
105	0.05336	9.9	-3.0 -2.9 -2.8	
110	0.04604	10.6	-2.9	
115	0.03985	11.4	-2.8	
120 125 130	0.03461	12.2 12.9 13.7	-2.8 -2.7	
125	0.03015	12.9	-2.7	
130	0.02635	13.7	-2.7	
135	0.02309	14.5	-2.6 -2.5	
140	0.0203	15.3	-2.5	
145	0.01789	16.1	-2.5	

- Material B(K)				
T .	N5 4160			
(°C)	R(T) / R25	TF (%)	a (%/°C)	
-55	115.8	16.3	-7.52	
-50	79.72	14 1	-7.28	
-45	55.54	12.1	-7.04	
-40	39.15	12.1 10.4	-6.82	
-35	27.91	8.8	-6.61	
-30	20.11	7.4	-6.40	
-25	14.64	6.2	-6.20	
-20	10.77	5.1	-6.01	
-15	7.996	4.2	-5.83	
-10	5.991 4.529	3.3 2.6	-5.65	
-5	4.529	2.6	-5.48	
0	3.454	2.0	-5.31	
5	2.655	1.4	-5.16	
10	2.057	1.0	-5.00	
15	1.606	0.6	-4.86	
20	1.263	0.3	-4.72	
25	1.0000	0.0	-4.58	
30	0.7973	0.3	-4.45	
35	0.6398	0.5	-4.32	
40	0.5167	0.9	-4.20	
45	0.4198	1.2	-4.09	
50	0.3430	1.6	-3.97	
55	0.2819	2.0 2.4	-3.86	
60	0.2329	2.4	-3.76	
65	0.1934	2.8	-3.66	
70	0.1614	3.3	-3.56	
75	0.1354	3.7 4.2	-3.46	
80	0.1141	4.2	-3.37	
85	0.09658	4.7	-3.29	
90	0.08211	5.2 5.7	-3.20	
95	0.07010	5./	-3.12	
100	0.06009	6.2	-3.04	
105	0.05171	6.7	-2.96	
110	0.04467	7.2	-2.89	
115	0.03872	7.7	-2.82	
120	0.03369	8.2	-2.75	
125 130	0.02941 0.02576	8.8	-2.68	
		9.3	-2.62	
135	0.02263	9.8	-2.55	
140	0.01995	10.3	-2.49	
145 150	0.01763	10.9 11.4	-2.44 -2.38	
150	0.01563	11.4	-2.38	

T Material B(K)				
T .	P 4220			
(°C)	R(T) / R25	TF (%)	α (%/°C)	
-55	121.4 83.35 57.92 40.72	24.8	-7.56	
-50	83.35	21.5	-7.32	
-45	57.92	21.5 18.4	-7.32 -7.09	
-40	40.72	15.8	-6.87	
-40 -35	1 28.95	13.4	-6.66	
-30 -25 -20	20.80	11.3	-6.45	
-25	15.10	9.4	-6.26	
-20	11.07	9.4 7.8	-6.07	
-15	8.197 6.123	6.3	-5.89 -5.71 -5.54	
-10	6.123	5.1	-5.71	
-5	4.615	4.0	-5.54	
0 5	3.508	3.0	-5.38	
5	2.688	2.2	-5.22	
10	2.688 2.076	1.5	-5.07	
15	1.616	0.9	-4.92	
20	1.267	0.4	I -4 /8 I	
25 30	1.0000 0.7949	0.0	-4.64	
30	0.7949	0.4 0.8	-4.51	
35	0.6359	0.8	-4.38	
40	0.5120	1.3 1.8	-4.26 -4.14	
45	0.4148	1.8	-4.14	
50	0.3379	2.4 3.0	-4.03 -3.92 -3.81	
55	0.2769 0.2281	3.0	-3.92	
60	0.2281	3.6	-3.81	
65	0.1890	4.3	-3.71	
70	0.1573	5.0	-3.71 -3.61 -3.52	
75	0.1316	5.7	-3.52	
80	0.1106	6.4 7.1	-3.42 -3.34	
85	0.09337	7.1	-3.34	
90	0.07918	7.9	-3.25	
95	0.06743	8.6	-3.17 -3.09	
100	0.05766	9.4	-3.09	
105	0.04950	10.2	-3.01	
110	0.04266	10.9	-2.93	
115	0.03691	11.7	-2.86	
120	0.03204	12.5 13.3	-2.79 -2.72	
125	0.02791	13.3	-2.72	
130	0.02439	14.1	-2.66	
135	0.02139	14.9 15.7	-2.59 -2.53	
140	0.01881	15.7	-2.53	
145	0.01660	16.5	-2.47	
150	0.01469	17.3	-2.42	

Т	Material B(K)		
(°C)		PA 4235	
	R(T) / R25	TF (%)	α (%/°C)
-55	123.40	8.3 7.2 6.2 5.3	-7.68
-50	84.33	7.2	-7.42
-45	58.39	6.2	-7.17
-40	40.93	5.3	-6.93
-35	29.04	4.5	-6.71
-30	20.83	3.8	-6.49
-25	15.11	3.2	-6.29
-20	11.07	2.6	-6.09
-15	8.190	2.1	-5.90
-10	6.117	1.7	-5.72
-5	4.610	1.7 1.3	-5.54
0	3.505	1.0	-5.38
5	2.686	0.7	-5.22 -5.07
10	2.075	0.5	
15	1.615	0.3	-4.92
20	1.267	0.1	-4.78
25	1.0000	0.0	-4.64
30	0.7949	0.1	-4.51
35	0.6359	0.3	-4.39
40	0.5119	0.4	-4.27
45	0.4145	0.6	-4.15
50	0.3376	0.8	-4.04
55	0.2764 0.2276	1.0	-3.93
60		1.2	-3.83
65	0.1883	1.4	-3.73
70	0.1566	1.7	-3.63
75	0.1308	1.9	-3.54
80	0.1098	2.1 2.4	-3.45
85	0.09257	2.4	-3.37
90	0.07836	2.6	-3.28
95	0.06661	2.9	-3.20
100	0.05685	3.1	-3.13
105	0.04870	3.4	-3.05
110	0.04188	3.7	-2.98
115	0.03614	3.9	-2.91
120	0.03129	4.2	-2.84 -2.78
125	0.02719	4.5	-2./8
130	0.02370	4.7	-2.71
135	0.02072	5.0	-2.65
140	0.01817	5.3	-2.59
145	0.01598	5.5	-2.54
150	0.01409	5.8	-2.48

Т	Material B(K)			
(°C)		Q 4300		
	R(T) / R25	TF (%)	α (%/°C)	
-55	98.04	25.3	-6.87	
-50	69.53	21.9	-6.70	
-45	49.73	18.8	-6.53 -6.37	
-40	35.87	16.1	-6.37	
-35	26.08	13.6	-6.22	
-30	19.12	11.5	-6.07	
-25	14.12	9.6	-5.92	
-20	10.51	7.9	-5.78	
-15	7.877	6.5	-5.64	
-10	5.947	5.2	-5.50	
-5	4.521	4.0	-5.37	
0	3.460	3.1	-5.24	
5	2.666	2.2 1.5	-5.11	
10	2.067	1.5	-4.99	
15	1.613	0.9	-4.87	
20	1.266	0.4	-4.75	
25	1.0000	0.0	-4.63	
30	0.7944	0.4	-4.52	
35	0.6347	0.8	-4.41	
40	0.5099	1.3	-4.30	
45	0.4119	1.9	-4.20	
50	0.3344	2.4 3.1	-4.09	
55	0.2730	3.1	-3.99	
60	0.2239	3.7	-3.90	
65	0.1846	4.4	-3.80	
70	0.1529	5.1	-3.71	
75	0.1272	5.8	-3.62	
80	0.1063	6.5	-3.53	
85	0.08927	7.2	-3.44	
90	0.07526	8.0	-3.36	
95	0.06372	8.8	-3.28	
100	0.05417	9.6	-3.20	
105	0.04622	10.4	-3.13	
110	0.03960	11.2	-3.05	
115	0.03405	12.0	-2.98	
120	0.02938	12.8	-2.91	
125	0.02545	13.6	-2.84 -2.77	
130	0.02211	14.4		
135	0.01928	15.2	-2.71	
140	0.01686	16.0	-2.64	
145	0.01479	16.8	-2.58	
150	0.01302	17.7	-2.52	

_		Material B(K)	
T,	QA 4250		
(°C)	R(T) / R25	TF (%)	α (%/°C)
-55	99.06	8.3	-7.09
-50	69.60	7.2	-6.88
-45	49.42	6.2 5.3	-6.68
-40	35.45	5.3	-6.49
-35	25.67	4.5	-6.30
-30	18.77	3.8	-6.13
-25	13.84	3.2	-5.96
-20	10.29	2.6	-5.79
-15	7.719	2.1	-5.64
-10	5.834	1.7	-5.49
-5	4.442	1.3	-5.34
0	3.407	1.0	-5.20
5	2.632	0.7	-5.07
10	2.047	0.5	-4.94
15	1.602	0.3	-4.81
20	1.262	0.1	-4.69
25	1.0000	0.0	-4.57
30	0.7971	0.1	-4.46
35	0.6389	0.3	-4.35
40	0.5149	0.4	-4.24
45	0.4172	0.6	-4.14
50	0.3397	0.8	-4.04
55	0.2780	1.0	-3.95
60	0.2286	1.2	-3.85
65	0.1888	1.4	-3.76
70	0.1567	1.7	-3.68
75	0.1306	1.9	-3.59
80	0.1093	2.1	-3.51
85	0.09179	2.4	-3.43
90	0.07743	2.6	-3.36
95	0.06556	2.9	-3.28
100	0.05571	3.2	-3.21
105	0.04752	3.4	-3.14
110	0.04067	3.7	-3.07
115	0.03492	3.9	-3.01
120	0.03008	4.2	-2.94
125	0.02600	4.5	-2.88
130	0.02254	4.7	-2.82
135	0.01960	5.0	-2.76
140	0.01709	5.3	-2.71
145	0.01495	5.5	-2.65
150	0.01311	5.8	-2.60

Т	Material B(K) R 4400		
(°C)			
	R(T) / R25	TF (%)	α (%/°C)
-55	113.90	25.9	-7.13
-50	79.71	22.4	-6.95
-45	56.30	19.2	-6.77
-40	40.13	19.2 16.4	-6.60
-35	28.85	14.0	-6.44
-30	20.92 15.29 11.27	11.8	-6.28
-25	15.29	9.8	-6.12
-20	11.27	8.1	-5.97
-15	8.368 6.261	6.6	-5.82
-10	6.261	5.3	-5.68
-5	4.719	4.1 3.1 2.3 1.5	-5.53
<u>0</u> 5	3.583	3.1	-5.40
5	2.739 2.108	2.3	-5.26
10	2.108	1.5	-5.13
15	1.634	0.9	-5.00
20	1.274	0.4	-4.88 -4.75
25 30	1.0000	0.0	-4.75
30	0.7897	0.4	-4.64
35	0.6273	0.9	-4.52
40	0.5012	1.4	-4.41 -4.30
45	0.4028	1.9	
50	0.3255	2.5 3.1 3.8	-4.19
55	0.2644	3.1	-4.09
60	0.2159	3.8	-3.98
65	0.1772	4.5	-3.89
70	0.1462	5.2	-3.79
75	0.1212	5.9	-3.79 -3.70
80	0.1009	4.5 5.2 5.9 6.7	l -3.60 l
85	0.08440	7.4 8.2	-3.52 -3.43
90	0.07092	8.2	-3.43
95	0.05984	9.0	-3.35
100	0.05071	9.8	-3.26 -3.19
105	0.04314	10.6	-3.19
110	0.03685	11.4	-3.11
115	0.03160	12.2 13.1	-3.03 -2.96
120	0.02719	13.1	-2.96
125	0.02349	13.9	-2.89
130	0.02036	14.7	-2.82
135	0.01770	15.6	-2.76
140	0.01545	16.4	-2.69
145	0.01352	17.2	-2.63
150	0.01107	10.1	0.57

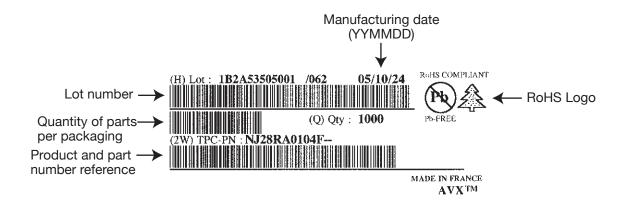
т	Material B(K)		
(°C)	RA 4380		(2.12.2)
	R(T) / R25	TF (%)	α (%/°C)
- <u>55</u>	110.80	8.6	-7.24
-50	77.24	7.4	-7.03
-45	54.44	6.4	-6.83
-40 -35	38.76	5.5	-6.63
-35	27.87	4.6	-6.45
-30	20.22	3.9	-6.27
-25	14.81	3.3	-6.10
-20	10.94	3.3 2.7 2.2	-5.93
-15	8.144	2.2	-5.78
-10	6.112	1.8	-5.62
-5	4.623	1.4	-5.48
0	3.522	1.0	-5.34
5	2.702	0.8	-5.20
10	2.087	0.5	-5.07
15	1.623	0.3	-4.94
20	1.2/0	0.1	-4.82
25	1.0000	0.0	-4.70
30	0.7920	0.1	-4.59
35	0.6308	0.3	-4.47
40	0.5052	0.5	-4.37
45	0.4068	0.6	-4.26
50	0.3292	0.8	-4.16
55	0.2678	1.0	-4.07
60	0.2189	1.3	-3.97
65	0.1797	1.5	-3.88
70	0.1482	1.7	-3.79
75	0.1228	2.0	-3.71
80	0.1022	2.2	-3.63
85	0.08536	2.5	-3.55
90	0.07159	2.5 2.7	-3.47
95	0.06028	3.0	-3.39
100	0.05095	3.2	-3.32 -3.25
105	0.04322	3.5	-3.25
110	0.03679	3.8	-3.18
115	0.03142	4.1	-3.11
120	0.02693	4.3	-3.05
125	0.02315	4.6	-2.98
130	0.01997	4.9	-2.92
135	0.01728	5.2	-2.86
140	0.01499	5.4	-2.80
145	0.01304	5.7	-2.75
150	0.01138	6.0	-2.69

Т	Material B(K)			
(°C)	RC 4340			
	R(T) / R25	TF (%)	a (%/°C)	
-55	105.70	25.5	-7.15	
-50	74.01	25.5 22.1	-6.95	
-45	52.37 37.43	1 190	-6.75 -6.56	
-40	37.43	16.2	-6.56	
-35	27.01	13.8	-6.38	
-30 -25 -20	19.66	11.6	-6.20	
-25	14.44	9.7 8.0	-6.04 -5.87	
-20	10.70	8.0	-5.87	
-15	10.70 7.990	6.5	-5.72 -5.57	
-10	6.013	5.2 4.1 3.1	-5.57	
-5 0 5	4.559	4.1	-5.42 -5.29	
0	3.482	3.1	-5.29	
5	2.678	2.2	l -5.15	
10	2.074	2.2 1.5	-5.02	
15	1.616	0.9	-4.90	
20	1.267	0.4	-4.77	
25 30	1.0000 0.7936	0.0	-4.66 -4.54	
30	0.7936	0.4	-4.54	
35	0.6334	0.4 0.8	-4.43	
40	0.5083	1.3 1.9 2.5 3.1	-4.33 -4.23	
45	0.4100	1.9	-4.23	
50	0.3325	2.5	-4.13	
55	0.2709 0.2218	3.1	-4.03	
60	0.2218	l 3.7	-3.94	
65	0.1825	4.4	l -3.85	
70	0.1508	4.4 5.1	-3.76 -3.67 -3.59 -3.51	
75	0.1251	5.8	-3.67	
80	0.1043	6.6	-3.59	
85	0.08727	7.3	-3.51	
90	0.07332	8.1	- ション	
95	0.06184	8.9	-3.36	
100	0.05235	9.7	-3.43 -3.36 -3.29 -3.22	
105	0.04448	10.5	-3.22	
110	0.03793	11.3	-3.15	
115	0.03245	12 1	-3.15 -3.08	
120	0.02785	12.9 13.7	-3.01	
125	0.02399	13.7	-2.95	
130	0.02072	14.5	-2.89	
135	0.01796	15.4	-2.83	
140	0.01561	16.2	-2.77	
145	0.01360	17.0	-2.72	
150	0.01189	17.8	-2.66	

Т	Material B(K)		
(°C)		T 4630	
	R(T) / R25	TF (%)	α (%/°C)
-55	137.10	27.2	-7.33
-50	94.94	23.5	-7.15
-45	66.35	27.2 23.5 20.2	-6.98
-40 -35	46.78 33.25	17.3	-6.82
-35	33.25	14.7	-6.66
-30	23.84	12.4	-6.50
-25 -20	17.23 12.54	10.3	-6.35 -6.20
-20	12.54	8.5	
-15	9.206	6.9	-6.05
-10	6.807	5.6	-5.91 -5.77
-5	5.070	4.3	-5.77
0	3.803	3.3	-5.63
5	2.873	2.4	-5.50
10	2.185	1.6	-5.36
15	1.673	1.0	-5.23
20	1.289	0.4	-5.11
25	1.0000	0.0	-4.99
30	0.7805	0.4	-4.86
35	0.6129	0.9	-4.75
40	0.4841	1.4	-4.63
45	0.3847	1.4 2.0 2.6	-4.52
50	0.3074	2.6	-4.41
55	0.2470	3.3	-4.30
60	0.1996	4.0	-4.19
<u>65</u>	0.1621	4.7	-4.09
70	0.1323	5.4	-3.99
75	0.1086	6.2	-3.89
80	0.08951	7.0	-3.80
85	0.07416	7.8	-3.71 -3.62
90	0.06172	8.6	-3.62
95	0.05160	9.5 10.3	-3.53
100	0.04333	10.3	-3.44
105	0.03655	11.2	-3.36
110	0.03095	12.0 12.9	-3.28 -3.20
115	0.02632	12.9	-3.20
120	0.02246	13.7	-3.12
125 130	0.01925	14.6	-3.05 -2.97
130	0.01656	15.5	-2.97
135	0.01429 0.01238	16.4	-2.90
140 145	0.01238	17.3 18.1	-2.83 -2.77
150	0.009383	19.0	-2.70

Т	Material B(K)		
(°C)		U 4840	(2 (2 2)
, ,	R(T) / R25	TF (%)	α (%/°C)
-55	173.70	28.5	-7.69
-50	118.20	24.6	-7.50
-45	81.18	21.2	-7.32
-40	56.26 39.34	18.1	-7.15
-35		15.4	-6.98
-30	27.75	12.9	-6.82
-25	19.74	10.8	-6.66
-20	14.15	8.9	-6.50
-15	10.23 7.457	7.3	-6.34
-10		5.8	-6.19
-5	5.476	4.5	-6.04
0	4.051	3.4 2.5	-5.90
5	3.020	2.5	-5.76
10	2.267	1.7	-5.62
15	1.714	1.0	-5.48
20	1.305	0.5	-5.35
25	1.0000	0.0	-5.22
30	0.7715	0.4	-5.09
35	0.5991	0.9	-4.97
40	0.4681	1.5	-4.84
45	0.3680	2.1	-4.72
50	0.2911 0.2316	2.8 3.4	-4.61
55		3.4	-4.49
60	0.1853	4.2	-4.38
65	0.1491	4.9	-4.28
70	0.1206	5.7	-4.17
75	0.09812	6.5	-4.07
80	0.08022	7.3	-3.97
85	0.06591	8.2	-3.87
90	0.05442	9.0	-3.77 -3.68
95	0.04515	9.9	-3.68
100	0.03763	10.8	-3.59
105	0.03150	11.7	-3.50
110	0.02649	12.6	-3.42
115	0.02237	13.5	-3.33 -3.25
120	0.01897	14.4	-3.25
125	0.01615	15.3	-3.17
130	0.01380	16.2	-3.10
135	0.01184	17.1	-3.02
140	0.01020	18.0	-2.95 -2.88
145	0.008814	19.0	
150	0.007643	19.9	-2.81

	Material B(K)			
T (°C)		S 4520		
	R(T) / R25	TF (%)	α (%/°C)	
-55	126.10	26.6	-7.25	
-50	87.75	23.0	-7.07	
-45	61.60	19.8	-6.90	
-40	43.63	16.9	-6.90 -6.73	
-35	31.17	14.3	-6.56	
-30	22.46	12.1	-6.40	
-25 -20	16.31	10.1	-6.25	
-20	11.94	8.3	-6.10	
-15	8.809	6.8	-5.95	
-10	6.549	5.4	-5.80	
-5	4.904	4.2	-5.66	
0	3.699	4.2 3.2 2.3	-5.52	
5	2.810	2.3	-5.39	
10	2.149	1.6	-5.26	
15	1.654	1.0	-5.13	
20	1.282	0.4	-5.00	
25	1.0000	0.0	-4.88	
30	0.7848	0.4	-4.76	
35	0.6196	0.9	-4.64	
40	0.4921	1.4	-4.52	
45	0.3931	2.0	-4.41	
50	0.3158	2.6	-4.30	
55	0.2551 0.2072	3.2 3.9	-4.20	
60	0.2072	3.9	-4.09	
65	0.1691	4.6	-3.99	
70	0.1387	5.3	-3.89	
75	0.1144	6.1	-3.80	
80	0.0948	6.8	-3.71	
85	0.0789	7.6	-3.61	
90	0.06594	8.4	-3.53	
95	0.05538	9.2 10.1	-3.44	
100	0.04671	10.1	-3.36	
105	0.03956	10.9	-3.28	
110	0.03364	11.7	-3.20	
115	0.02872	12.6	-3.12	
120	0.02461	13.4	-3.04	
125	0.02117	14.3	-2.97	
130	0.01827	15.1	-2.90	
135	0.01583	16.0	-2.83	
140	0.01376	16.8	-2.77	
145	0.01200	17.7	-2.70	


Т	Material B(K) SC 4500		
(°C)			
	R(T) / R25	TF (%)	α (%/°C)
-55	129.80	26.5 22.9	-7.51
-50	89.31	22.9	-7.29
-45	62.15	19.7	-7.07
-40 -35	43.72 31.07	16.8	-6.87
-35	31.07	14.3	-6.68
-30	22.29	12.0	-6.49
-25	16.15	10.0	-6.31
-20	l 11.80 l	8.3	-6.14
-15	8.703	6.8	-5.97 -5.81
-10	6.470	5.4	-5.81
-5	4.849	4.2	-5.66 -5.51
0	3.662	3.2	-5.51
5	2.786	4.2 3.2 2.3 1.6	-5.36
10	2.135	1.6	-5.23
15	1.647 1.279	0.9	-5.09
20	1.279	0.4	-4.96
25	1.0000	0.0	-4.84
30	0.7865	0.4	-4.72
35	0.6223	0.9	-4.60
40	0.4953	1.4	-4.49
45	0.3963	2.0 2.6 3.2	-4.38
50	0.3189 0.2579	2.6	-4.28
55	0.2579	3.2	-4.18
60	0.2096	3.9	-4.08
65	0.1712 0.1405	4.6	-3.99 -3.89
70	0.1405	5.3	-3.89
75	0.1159	6.0	-3.80
80	0.09595	6.8	-3.72 -3.63
85	0.07980	7.6	-3.63
90	0.06664	8.4	-3 55
95	0.05588	9.2 10.0	-3.47 -3.40 -3.32
100	0.04704	10.0	-3.40
105	0.03975	10.8	-3.32
110	0.03371	11.7	-3.25
115	0.02869	12.5	-3.18
120 125	0.02450 0.02100	13.4	-3.12 -3.05
125	0.02100	14.2	-3.05
130	0.01805	15.1	-2.99
135	0.01557	15.9	-2.92 -2.86
140	0.01347	16.8	-2.86
145	0.01169	17.6	-2.80
150	0.01017	18.5	-2.75

IDENTIFICATION - TRACEABILITY

On the packaging of all shipped thermistors, you will find a bar code label.

This label gives systematic information on the type of product, part number, lot number, manufacturing date and quantity. An example is given below:

This information allows complete traceability of the entire manufacturing process, from raw materials to final inspection.

This is extremely useful for any information request, customer complaint or product return.

FOLLOW US:

VISIT US AT

North America Tel: +1 864-967-2150

Europe Tel: +44 1276-697000

Asia Tel: +65 6286-7555

Central America Tel: +55 11-46881960

Japan Tel: +81 740-321250