Data Sheet

FEATURES

1.8 V to 5.5 V operation

Ultralow on resistance
0.4Ω typical
0.6Ω maximum at 5 V supply
Excellent audio performance, ultralow distortion
0.07Ω typical
0.14Ω maximum Ron flatness
High current carrying capability
400 mA continuous
600 mA peak current at 5 V
Automotive temperature range: $-\mathbf{4 0 ^ { \circ }} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Rail-to-rail switching operation
Typical power consumption ($<0.1 \mu \mathrm{~W}$)

APPLICATIONS

Cellular phones

PDAs

MP3 players
Power routing
Battery-powered systems
PCMCIA cards

Modems

Audio and video signal routing
Communication systems

Data switching

GENERAL DESCRIPTION

The ADG888 is a low voltage, dual DPDT (double-pole, double-throw) CMOS device optimized for high performance audio switching. With its low power and small physical size, it is ideal for portable devices.

This device offers ultralow on resistance of less than 0.8Ω over the full temperature range, making it an ideal solution for applications requiring minimal distortion through the switch. The ADG888 also has the capability of carrying large amounts of current, typically 400 mA at 5 V operation.

When on, each switch conducts equally well in both directions and has an input signal range that extends to the supplies. The ADG888 exhibits break-before-make switching action.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC 1 INPUT

Figure 1.

The ADG888 is available in a 16-ball WLCSP, 16-lead LFCSP, and a 16-lead TSSOP. These packages make the ADG888 the ideal solution for space-constrained applications.

PRODUCT HIGHLIGHTS

1. $<0.6 \Omega$ over full temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
2. High current handling capability (400 mA continuous current at 5 V).
3. Low THD $+\mathrm{N}(0.008 \%$ typical $)$.
4. Tiny 16-ball WLCSP, 16-lead LFCSP, and 16-lead TSSOP.

Rev. D

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 5
REVISION HISTORY
1/2019—Rev. C to Rev. D
Changes to Table 5 and to Table 6 Headings 7
Updated Outline Dimensions 13
3/2017—Rev. B to Rev. C
Changes to Figure 4 7
Changes to Figure 19 10
Changes to Ordering Guide 14
4/2016-Rev. A to Rev. B
Changed CB-16 to CB-16-1 and CP-16-4 toCP-16-23
Changes to Figure 2 and Table 4 6
Moved Figure 4 7
Added Table 5; Renumbered Sequentially 8
Updated Outline Dimensions 13
Changes to Ordering Guide 14
ESD Caution 5
Pin Configurations and Function Descriptions 6
Typical Performance Characteristics 8
Test Circuits 10
Terminology 12
Outline Dimensions 13
Ordering Guide 14
12/2006-Rev. 0 to Rev. A
Updated Format Universal
Changes to Table 2 4
Changes to Table 35
Changes to Ordering Guide 13
7/2005—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}$ to 5.5 V, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	B Version ${ }^{1}$	Y Version ${ }^{1}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 to $V_{\text {D }}$	V	
On Resistance (Ros)	0.4			Ω typ	$\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}, \mathrm{~V}_{S}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{l}_{\mathrm{DS}}=100 \mathrm{~mA}$
	0.48	0.55	0.6	Ω max	See Figure 16
On Resistance Match Between Channels (Δ Ron)	0.04			Ω typ	$\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=2.2 \mathrm{~V}, \mathrm{los}=100 \mathrm{~mA}$
On Resistance Flatness (Rflat (On)	0.06	0.07	0.075	Ω max	
	0.07			Ω typ	$\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$ to V_{DD}
	0.11	0.13	0.14	Ω max	$\mathrm{los}=100 \mathrm{~mA}$
LEAKAGE CURRENTS					$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$
Source Off Leakage Is (Off)	± 0.2			nA typ	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 17
Channel On Leakage I_{D}, $\mathrm{IS}^{\text {(On) }}$	± 0.2			nA typ	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}$ or 4.5 V ; see Figure 18
DIGITAL INPUTS					
Input High Voltage, Vinh			2.0	\checkmark min	
Input Low Voltage, VINL			0.8	\checkmark max	
Input Current					
lind or linh	0.005			$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
			± 0.1	$\mu \mathrm{A}$ max	
CIN, Digital Input Capacitance	2			pF typ	
DYNAMIC CHARACTERISTICS ${ }^{2}$					
ton	22			ns typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	30	33	35	ns max	$\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V} / 0 \mathrm{~V}$; see Figure 19
toff	13			ns typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	17	18	19	ns max	$\mathrm{V}_{5}=3 \mathrm{~V} / 0 \mathrm{~V}$; see Figure 19
Break-Before-Make Time Delay (($_{\text {BвM }}$)	9			ns typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			5	ns min	$\mathrm{V}_{51}=\mathrm{V}_{52}=3 \mathrm{~V}$; see Figure 20
Charge Injection	70			pC typ	$\mathrm{V}_{s}=0 \mathrm{~V}, \mathrm{R}_{S}=0 \Omega, \mathrm{C}_{L}=1 \mathrm{nF}$; see Figure 21
Off Isolation	-67			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$; see Figure 22
Channel-to-Channel Crosstalk	-99			dB typ	Adjacent channel; $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, $\mathrm{f}=100 \mathrm{kHz}$; see Figure 25
	-67			dB typ	Adjacent switch; $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$; see Figure 23
Total Harmonic Distortion (THD + N)	0.008			\%	$\mathrm{RL}_{\mathrm{L}}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\mathrm{s}}=3 \mathrm{~V} \mathrm{p}-\mathrm{p}$
Insertion Loss	-0.03			dB typ	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}$; see Figure 24
-3 dB Bandwidth	29			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$; see Figure 24
C_{5} (Off)	58			pF typ	
$C_{\text {d }}, C_{S}(\mathrm{On})$	110			pF typ	
POWER REQUIREMENTS IDD					$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$
	0.003			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or 5.5 V
		1	4	$\mu \mathrm{A}$ max	

[^0]
ADG888

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
VDD to GND	-0.3 V to +6 V
Analog Inputs, Digital Inputs ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D 5 V operation	600 mA (pulsed at 1 ms , 10% duty cycle max)
Continuous Current, S or D 5 V operation	400 mA
Operating Temperature Range Automotive (Y Version)	
TSSOP and LFCSP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Industrial (B version)	
WLCSP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance	
16-Lead TSSOP	
θ_{JA} (4-Layer Board)	
θ л	$27.6^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead WLCSP θ_{JA} (4-Layer Board)	$130^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP	
θ_{JA} (4-Layer Board)	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering (RoHS Compliant)	
Peak Temperature	$260(+0 /-5)^{\circ} \mathrm{C}$
Time at Peak Temperature	10 sec to 40 sec

[^2]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. 16-Lead LFCSP
Pin Configuration

Figure 3. 16-Lead TSSOP
Pin Configuration

Table 4. LFCSP and TSSOP Pin Function Descriptions

Pin No.			
LFCSP	TSSOP	Mnemonic	Description
1	3	D1	Drain Terminal 1. Can be an input or output.
2	4	S1B	Source Terminal 1B. Can be an input or output.
3	5	S2B	Source Terminal 2B. Can be an input or output.
4	6	D2	Drain Terminal 2. Can be an input or output.
5	7	S2A	Source Terminal 2A. Can be an input or output.
6	8	IN1	Logic Control Input.
7	9	S32	Logic Control Input.
8	10	D3	Source Terminal 3A. Can be an input or output.
9	11	S3B	Source Terminal 3B. Can be an input or output.
10	12	S4B	Source Terminal 4B. Can be an input or output.
11	13	D4	Drain Terminal 4. Can be an input or output.
12	14	S4A	Source Terminal 4A. Can be an input or output.
13	15	GND	Ground (0 V) Reference.
14	16	VDD	Most Positive Power Supply Potential.
15	1	S1A	Source Terminal 1A. Can be an input or output.
16	2	Exposed Pad. The exposed pad must be connected to ground.	
0	Not applicable	EP	

Figure 4. 16-Ball WLCSP Pin Configuration
Table 5. WLCSP Pin Function Descriptions

WLCSP Pin No.	Mnemonic	Description
1A	D4	Drain Terminal 4. Can be an input or output.
2A	S4A	Source Terminal 4A. Can be an input or output.
3A	S1A	Source Terminal 1A. Can be an input or output.
4A	D1	Drain Terminal 1. Can be an input or output.
1B	S4B	Source Terminal 4B. Can be an input or output.
2B	GND	Ground (O V) Reference.
3B	VDD	Most Positive Power Supply Potential.
4B	S1B	Source Terminal 1B. Can be an input or output.
1C	S3B	Source Terminal 3B. Can be an input or output.
2C	IN2	Logic Control Input.
3C	IN1	Logic Control Input.
4C	S2B	Source Terminal 2B. Can be an input or output.
1D	D3	Drain Terminal 3. Can be an input or output.
2D	S3A	Source Terminal 3A. Can be an input or output.
3D	S2A	Source Terminal 2A. Can be an input or output.
4D	D2	Drain Terminal 2. Can be an input or output.

Table 6. Truth Table

Logic (IN1/IN2)	Switch S1A/S2A/S3A/S4A	Switch S1B/S2B/S3B/S4B
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance vs. $V_{D}\left(V_{S}\right), V_{D D}=4.2 \mathrm{~V}$ to 5.5 V

Figure 6. On Resistance vs. $V_{D}\left(V_{S}\right), V_{D D}=2.7 \mathrm{~V}$ to 3.6 V

Figure 7. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different
Temperatures, $V_{D D}=5 \mathrm{~V}$

Figure 8. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, $V_{D D}=3 \mathrm{~V}$

Figure 9. Charge Injection vs. Source Voltage

Figure 10. $t_{\mathrm{O}} / t_{\text {off }}$ Times vs. Temperature

Figure 11. Bandwidth

Figure 12. Off Isolation vs. Frequency

Figure 13. Crosstalk vs. Frequency

Figure 14. Total Harmonic Distortion + Noise $(T H D+N)$

Figure 15. AC PSRR

TEST CIRCUITS

Figure 16. On Resistance

Figure 18. On Leakage

Figure 17. Off Leakage

Figure 19. Switching Times, ton $^{\text {, }}$ toff

Figure 20. Break-Before-Make Time Delay, $t_{B B M}$

Figure 21. Charge Injection

Figure 22. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{v}_{\mathrm{OUT}}}{\mathrm{vS}}$ 敬
Figure 23. Channel-to-Channel Crosstalk (S1A to S1B)

$$
\text { INSERTION LOSS }=20 \log \frac{\mathrm{~V}_{\text {OUT }} \text { WITH SWITCH }}{\mathrm{V}_{\text {OUT }} \text { WITHOUT SWITCH }}
$$

Figure 24. Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{VS}}$

Figure 25. Channel-to-Channel Crosstalk (S1A to S2A)

TERMINOLOGY

$I_{D D}$
Positive supply current.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
Analog voltage on Terminal D and Terminal S.
Ron
Ohmic resistance between Terminal D and Terminal S.
$\mathbf{R}_{\text {fLat (ON) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.

$\Delta \mathbf{R o N}_{\text {on }}$

On resistance match between any two channels.
Is (OFF)
Source leakage current with the switch off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{ON})$

Channel leakage current with the switch on.
$\mathrm{V}_{\text {INL }}$
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}\left(\mathbf{I}_{\text {INH }}\right)$
Input current of the digital input.
Cs (OFF)
Off switch source capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{Cs}_{\mathrm{s}}(\mathrm{ON})$
On switch capacitance. Measured with reference to ground.
C_{In}
Digital input capacitance.
ton
Delay time between the 50% and the 90% points of the digital input and switch on condition.
$t_{\text {OfF }}$
Delay time between the 50% and the 90% points of the digital input and switch off condition.
$\mathbf{t}_{\text {ввм }}$
On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during on-off switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance. This is specified for two conditions:

- Adjacent channel, that is, S1A to S2A, S1B to S2B, S3A to S4A, or S3B to S4B.
- Adjacent switch, that is, S1A to S1B, S2A to S2B, S3A to S3B, or S4A to S4B.
-3 dB Bandwidth
The frequency at which the output is attenuated by 3 dB .
On Response
The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.
THD + N
The ratio of the harmonic amplitudes plus signal noise to the fundamental.

OUTLINE DIMENSIONS

Figure 26. 16-Ball Wafer Level Chip Scale Package [WLCSP] (CB-16-1)
Dimensions shown in millimeters

Figure 27. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters

Figure 28. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-16-23)
Dimensions shown in millimeters
ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Marking Code 2
ADG888YRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG888YRUZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG888YRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG888YCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	$\mathrm{CP}-16-23$	S0D
ADG888BCBZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Ball Wafer Level Chip Scale Package [WLCSP]	CB-16-1	S02
EVAL-ADG888EBZ		Evaluation Board		

[^3]Data Sheet

NOTES

NOTES
Data Sheet ADG888

NOTES

ANALOG DEVICES

[^0]: ${ }^{1}$ Temperature range for the Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the TSSOP and LFCSP; temperature range for the B version is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the WLCSP.
 ${ }^{2}$ Guaranteed by design, not production tested.

[^1]: Temperature range for the Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the TSSOP and LFCSP; temperature range for the B version is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the WLCSP.
 ${ }^{2}$ Guaranteed by design, not production tested.

[^2]: ${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Limit current to the maximum ratings given.

[^3]: ${ }^{1} Z=$ RoHS Compliant Part.
 ${ }^{2}$ Branding on these packages is limited to three characters due to space constraints.

