

LTC 1422 Hot Swap Controller

DESCRIPTION

The Demonstration circuit DC1357 is intended to evaluate the performance of the LTC1422 Hot Swap Controller. The board allows demonstrating all possible operation modes: power up and power down, when power rail is turned on or turned off, a steady state with a constant load and overload conditions.

The board contains the LTC1422 Controller, a power MOSFET, a current sense resistor, a resistive feedback divider, an ON pin circuit and three LEDs to indicate input and output voltages, and RESET output signal.

The DC1357 is configured to operate in 12V rail with up to 7.3A circuit breaker threshold.

Design files for this circuit board are available. Call the LTC factory.

COPY, LTC, LTM, LT, Burst Mode, OPTI-LOOP, Over-The-Top and PolyPhase are registered trademarks of Linear Technology Corporation. Adaptive Power, C-Load, DirectSense, Easy Drive, FilterCAD, Hot Swap, LinearView, μModule, Micropower SwitcherCAD, Multimode Dimming, No Latency ΔΣ, No Latency Delta-Sigma, No RSENSE, Operational Filter, PanelProtect, PowerPath, PowerSOT, SmartStart, SoftSpan, Stage Shedding, SwitcherCAD, ThinSOT, UltraFast and VLDO are trademarks of Linear Technology Corporation. Other product names may be trademarks of the companies that manufacture the products.

PERFORMANCE SUMMARY Specifications are at $T_A = 25^{\circ}C$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V_{CC}	Operating range		2.7		12.0	V
V_{LKO}	V _{CC} Undervoltage Lockout		2.4	2.47	2.55	V
V_{LKH}	V _{CC} Undervoltage Lockout Hysteresis			120		mV
$\overline{V_{FB}}$	FB Pin Voltage Threshold		1.220	1.232	1.244	V
ΔV_{FB}	FB Pin Voltage Threshold Line Regulation	3V ≤ V _{CC} ≤ 12V		0.5	2.5	mV
V _{FBHST}	FB Pin Voltage Threshold Hysteresis			2		mV
V_{TMO}	TIMER Pin Voltage Threshold		1.208	1.232	1.256	V
ΔV_{TM}	TIMER Pin Voltage Threshold Line Regulation	3V ≤ V _{CC} ≤ 12V		2	15	mV
R _{ON}	TIMER Pin Voltage Threshold Hysteresis			45		mV
I _{TM}	Timer Pin Current	Timer On, GND ≤ V _{TIMER} ≤ 1.5V	-2.5	-2.0	-1.5	μΑ
		Timer Off, V _{TIER} = 1.5V		10		mA
V_{CB}	Circuit Breaker Trip Voltage	$V_{CB} = (V_{CC} - V_{SENSE})$	44	50	64	mV
I _{CP}	Gate Pin Output Current	Charge Pump On, V _{GATE} = GND	-12	-10	-8	μA
		Charge Pump Off, V _{GATE} = V _{CC}		10		mA
ΔV_{GATE}	External N–Channel Gate Drive	$V_{GATE} - V_{CC}$	10	12	14	V
V _{ONHI}	ON Pin Threshold High		1.25	1.30	1.35	V
V _{ONLO}	ON Pin Threshold Low		1.20	1.23	1.26	V
V _{ONHYST}	ON Pin Threshold Hysteresis			80		mV
V_{OL}	Output Low Voltage	$\overline{\text{RESET}}$, $I_0 = 3\text{mA}$		0.14	0.4	V
Гри	Logic Output Pull-Up Current	RESET = GND		-12		μА
t _{RST}	Soft Reset Time		22	30	48	μѕ

OPERATING PRINCIPLES

The LTC1422 is a low voltage hot swap controller that has a 2.7V to 12V operating range and 13.2V absolute maximum operating voltage for the Vcc pin. This demo circuit is populated for +12V operation, but it can easily be readjusted for any voltage in the operating voltage range by replacing R4 and R6 (top resistor in the feedback divider and top resistor in the ON pin signal divider).

MOSFET gate capacitor C2 defines the output voltage slew rate. Initially, the board is populated for a nominal 1040V/s slew rate.

The external ON control signal should be higher than 1.35V

QUICK START PROCEDURE

Demonstration circuit 1357 is easy to set up to evaluate the performance of the LTC1422. Refer to **Error! Reference source not found.** for proper measurement equipment setup and follow the procedure below:

- 1. Place jumper JP1 in the OFF position.
- 2. With +12V power on and switch SW1 open, connect the power supply output to V_{IN} and GND.
- **3.** With switch SW2 open connect ON Signal Source to ON and GND.
- **4.** Close the switch SW2 and observe Controller output voltage at the V_{OUT} and GND pins. The output voltage slew rate should be between 800V/s and 1250V/s. All three LEDs should light.
- 5. Use pure resistive loads $R_{LOAD1} = 2\Omega$ and $R_{LOAD2} = 1\Omega$ in the power-up transients.

In the first test with a 2Ω load Controller successfully completes power-up transient, and load current in the steady state should be in the range 7.3A and 10.6A.

In the second test with 1Ω load Controller must fail in the power-up.

6. Use pure capacitive loads $C_{LOAD1} = 5600 \mu F$ and $C_{LOAD2} = 13500 \mu F$ in the power-up transients.

With first load Controller successfully completes power-up transient.

With a second load Controller must fail in the power-up.

7. If DC1357 should be readjusted for the other transient parameters, please, pay special attention to the correspondence between MOSFET Safe Operating Area and transient parameters.

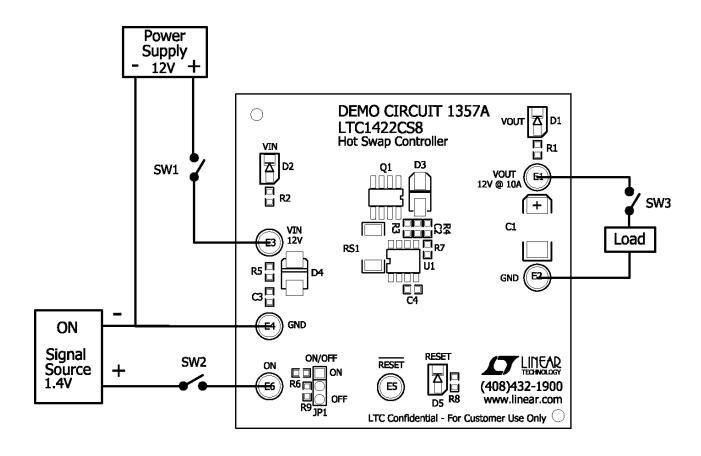
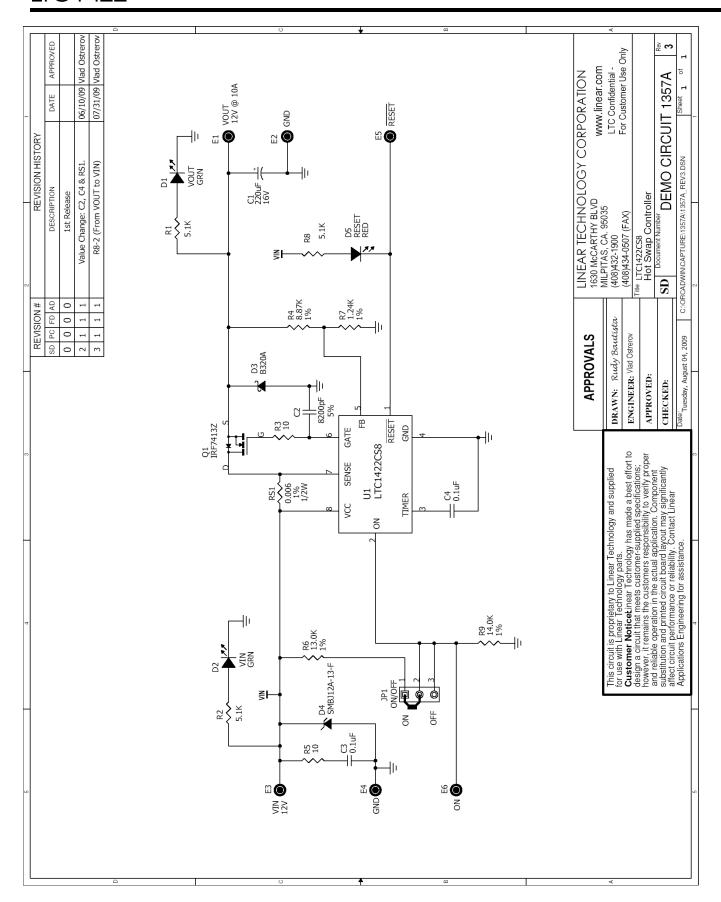



Figure 1. Proper Measurement Equipment Setup

Bill Of Material

ltem	Qty	Reference	Part Description	Manufacturer / Part #
1	1	C1	Cap., Tant. 220uF 16V 20%	AVX TPSE227M016R0100
2	1	C2	Cap., X7R 8200pF 50V 5% 0603	AVX 1F3E227M010H0100
3	1	C3	Cap., X7R(Flexterm) 0.1uF 25V 10% 0603	
4	1	C4	Cap., X7R 0.1uF 10V 20% 0603	AVX 0603ZC104MAT2A
5	2	D2,D1	LED, GRN	Panasonic LN1351CTR
6	1	D3	Schottky Diode, 20V/3Amp	Diodes Inc. B320A
7	1	D4	Voltage Supressor, 12V	Diodes Inc. SMBJ12A-13-F
8	1	D5	LED, RED	Panasonic LN1251CTR
9	6	E1,E2,E3,E4,E5,E6	Turret, Testpoint	Mill Max 2501-2-00-80-00-00-07-0
10	1	JP1	Headers, 3 Pins 2mm Ctrs.	Samtec TMM-103-02-L-S
11	1	Q1	N-Chan. Mosfet, 30V	International Rect. IRF7413Z
12	1	RS1	Res., 0.006 1/2W 1% 2010	Vishay WSL-2010-6L000-F-EA
13	3	R1,R2,R8	Res., Chip 5.1K 0.06W 5%	Vishay CRCW06035K10JNEA
14	2	R3,R5	Res., Chip 10 0.06W 5%	Vishay CRCW060310R0JNEA
15	1	R4	Res., Chip 8.87K 0.06W 1%	Vishay CRCW06038K87FKEA
16	1	R6	Res., Chip 13.0K 0.06W 1%	Vishay CRCW060313K0JNEA
17	1	R7	Res., Chip 1.24K 0.06W 1%	Vishay CRCW06031K24FKEA
18	1	R9	Res., Chip 14.0K 0.06W 1%	Vishay CRCW060314K0JNEA
19	1	U1	I.C., Hot Swap Controller	Linear Tech. Corp. LTC1422CS8
20	1	XJP1	Shunt, 2mm Ctrs.	Samtec 2SN-BK-G
21	1		FAB, 1357A_Rev1.pcb	DEMO CIRCUIT #1357A
22	1		STENCIL	STENCIL 1357A

