Data Sheet

FEATURES

0.5Ω typical on resistance

0.8Ω maximum on resistance at $125^{\circ} \mathrm{C}$
1.65 V to 3.6 V operation

Automotive temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
High current carrying capability: $\mathbf{3 0 0} \mathbf{m A}$ continuous
Rail-to-rail switching operation
Fast switching times: <25 ns
Typical power consumption <0.1 $\boldsymbol{\mu W}$

APPLICATIONS

Cellular phones

MP3 players
Power routing
Battery-powered systems
PCMCIA cards
Modems
Audio and video signal routing
Communications systems

GENERAL DESCRIPTION

The ADG811/ADG812/ADG813 are low voltage CMOS devices containing four independently selectable switches. These switches offer ultralow on resistance of less than 0.8Ω over the full temperature range. The digital inputs can handle 1.8 V logic with a 2.7 V to 3.6 V supply.
These devices contain four independent single-pole/singlethrow (SPST) switches. The ADG811 and ADG812 differ only in that the digital control logic is inverted. The ADG811 switches are turned on with a logic low on the appropriate control input, while a logic high is required to turn on the switches of the ADG812. The ADG813 contains two switches whose digital control logic is similar to the ADG811, while the logic is inverted on the other two switches.
Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The ADG813 exhibits break-before-make switching action.

The ADG811/ADG812/ADG813 are fully specified for 3.3 V , 2.5 V , and 1.8 V supply operation. The ADG811 is available in a 16-lead TSSOP package and a 16-lead LFCSP package, and the ADG812/ADG813 are available in a 16-lead TSSOP package.

SWITCHES SHOWN FOR A LOGIC 1 INPUT
Figure 1.

PRODUCT HIGHLIGHTS

1. $<0.8 \Omega$ over full temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
2. Single 1.65 V to 3.6 V operation.
3. Operational with 1.8 V CMOS logic.
4. High current handling capability (300 mA continuous current at 3.3 V).
5. Low THD $+\mathrm{N}(0.02 \%$ typical $)$.
6. Small $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP package and 16 -lead TSSOP package.

Rev. B
Information furmished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2003-2009 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features .. 1
Applications... 1
General Description ... 1
Functional Block Diagrams.. 1
Product Highlights .. 1
Revision History .. 2
Specifications... 3
Absolute Maximum Ratings... 6
ESD Caution... 6

REVISION HISTORY

11/09-Rev. A to Rev. B
Added 16-Lead LFCSP
Universal
Changes to Table 4. .. 6
Changes to Pin Configurations and Function Description
Section .. 7
Moved Terminology Section.. 13
Updated Outline Dimensions .. 14
Changes to Ordering Guide ... 15
Pin Configurations and Function Descriptions7
Typical Performance Characteristics 8
Test Circuits 11
Terminology 13
Outline Dimensions 14
Ordering Guide 15
5/04—Rev. 0 to Rev. AUpdated Format......UniversalUpdated Package Choices ..Universal

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. Temperature range for the Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Table 1.

[^0]
ADG813

$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. Temperature range for the Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Table 2.

[^1]
Data Sheet

$\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. Temperature range for the Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Table 3.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On Resistance Match Between Channels, Δ Ron	$\begin{aligned} & 1 \\ & \\ & 1.4 \\ & 2.5 \\ & 0.1 \end{aligned}$	2.2 4	0 V to V_{DD} 2.2 4	V Ω typ Ω max Ω max Ω typ	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$; see Figure 19 $\begin{aligned} & V_{D D}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD},} \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.7 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage Is (Off) Drain Off Leakage I_{D} (Off) Channel On Leakage Io, Is (On)	$\begin{aligned} & \pm 0.2 \\ & \pm 1 \\ & \pm 0.2 \\ & \pm 1 \\ & \pm 0.2 \\ & \pm 1 \end{aligned}$	± 5 ± 5 ± 9	$\begin{aligned} & \pm 30 \\ & \pm 30 \\ & \pm 60 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.95 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0.6 \mathrm{~V} / 1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.65 \mathrm{~V} / 0.6 \mathrm{~V} ; \\ & \text { see Figure } 20 \\ & \mathrm{~V}_{\mathrm{S}}=0.6 \mathrm{~V} / 1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.65 \mathrm{~V} / 0.6 \mathrm{~V} ; \\ & \text { see Figure } 20 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0.6 \mathrm{~V} \text { or } 1.65 \mathrm{~V} \text {; see Figure } 21 \end{aligned}$
DIGITAL INPUTS Input High Voltage, Vinh Input Low Voltage, VinL Input Current, $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$ CIN, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 6 \end{aligned}$		$\begin{aligned} & 0.65 \mathrm{~V}_{\mathrm{DD}} \\ & 0.35 \mathrm{VDD} \\ & \pm 0.1 \end{aligned}$	$V_{\text {min }}$ $V_{\text {max }}$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Break-Before-Make Time Delay, t ${ }_{\text {BB }}$ (ADG813 Only) Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion (THD + N) Insertion Loss -3 dB Bandwidth C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{D},} \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	27 90 32 38 60		37 10 5	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% dB typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} / 0 \mathrm{~V} ; \text { see Figure } 22 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} ; \text { see Figure } 22 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$ $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=1 \mathrm{~V}$; see Figure 23 $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ;$ see Figure 24 $\mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ;$ Figure 25 $\mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ;$ see Figure 27 $\begin{aligned} & R_{L}=32 \Omega, f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & V_{S}=1.2 \mathrm{~V} p-\mathrm{p} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { see Figure } 26 \end{aligned}$
POWER REQUIREMENTS IDD	0.003		4	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \hline \mathrm{VDD}=1.95 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 1.95 \mathrm{~V} \end{aligned}$

[^2]
ADG813

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4.

Parameter	Rating
$V_{\text {DD }}$ to GND	-0.3 V to +4.6 V
Analog Inputs ${ }^{1}$	-0.3 V to $\mathrm{V} \mathrm{DD}+0.3 \mathrm{~V}$
Digital Inputs ${ }^{1}$	GND -0.3 V to 4.6 V or 10 mA , whichever occurs first
Peak Current, S or D	(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty-cycle maximum)
3.3V Operation	500 mA
2.5V Operation	460 mA
1.8 V Operation	420 mA
Continuous Current, S or D	
3.3 V Operation	300 mA
2.5 V Operation	275 mA
1.8 V Operation	250 mA
Operating Temperature Range, Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
TSSOP Package	
θ_{JA} Thermal Impedance	$150^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {jc }}$ Thermal Impedance	$27^{\circ} \mathrm{C} / \mathrm{W}$
LFCSP Package	
θ_{JA} Thermal Impedance	$70^{\circ} \mathrm{C} / \mathrm{W}$
IR Reflow, Peak Temperature < 20 sec	$235^{\circ} \mathrm{C}$

${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.

Table 5. ADG811/ADG812 Truth Table

ADG811 IN	ADG812 IN	Switch Condition
0	1	On
1	0	Off

Table 6. ADG813 Truth Table

Logic	Switch 1, Switch 4	Switch 2, Switch 3
0	Off	On
1	On	Off

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. ADG811/ADG812/ADG813 Pin Configuration (16-Lead TSSOP)

Table 7. ADG811/ADG812/ADG813 Pin Configuration (16-Lead TSSOP)

Pin No.	Mnemonic	Definition
1	IN1	Logic control input. Drain Terminal. This pin may be an input or output. Source Terminal. This pin may be an input or output.
3	D1	S1
4	NC Connect.	
5	GND	Ground (0 V) reference. Source Terminal. This pin may be an input or output.
6	S4	Drain Terminal. This pin may be an input or output. Logic Control Input.
7	D4	Logic Control Input. Drain Terminal. This pin may be an input or output.
10	IN3	Source Terminal. This pin may be an input or output.
12	S3	No Connect. Most Positive Power Supply Potential.
13	VDD	Source Terminal. This pin may be an input or output. Drain Terminal. This pin may be an input or output.
14	S2	Logic Control Input.

NOTES

1. NC = NO CONNECT.
2. CONNECT EXPOSED PAD TO GND.

Figure 3. ADG811 Pin Configuration (16-Lead LFCSP)

Table 8. ADG811 Pin Configuration
(16-Lead LFCSP)
\(\left.$$
\begin{array}{l|l|l}\hline \text { Pin No. } & \text { Mnemonic } & \text { Definition } \\
\hline 1 & \text { S1 } & \begin{array}{l}\text { Source Terminal. This pin may be an } \\
\text { input or output. } \\
\text { No Connect. } \\
\text { Ground (0 V) Reference. } \\
\text { Source Terminal. This pin may be an } \\
\text { input or output. } \\
4\end{array}
$$

\hline 5 \& NC \& Drain Terminal. This pin may be an

input or output.\end{array}\right\}\)| Logic Control Input. |
| :--- |
| 6 |
| 7 |

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance vs. $V_{D}\left(V_{S}\right), V_{D D}=2.7 \mathrm{~V}$ to 3.6 V

Figure 5. On Resistance vs. $V_{D}\left(V_{S}\right), V_{D D}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$

Figure 6. On Resistance vs. $V_{D}\left(V_{S}\right), V_{D D}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$

Figure 7. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures, $V_{D D}=3.3 \mathrm{~V}$

Figure 8. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, $V_{D D}=2.5 \mathrm{~V}$

Figure 9. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures, $V_{D D}=1.8 \mathrm{~V}$

Figure 10. Leakage Current vs. Temperature, $V_{D D}=3.3 \mathrm{~V}$

Figure 11. Leakage Current vs. Temperature, $V_{D D}=2.5 \mathrm{~V}$

Figure 12. Leakage Current vs. Temperature, $V_{D D}=1.8 \mathrm{~V}$

Figure 13. Charge Injection (Qiss) vs. Source Voltage $\left(V_{S}\right)$

Figure 14. $\mathrm{t}_{\mathrm{o}} / \mathrm{toff}^{\text {Times }}$ vs. Temperature

Figure 16. Crosstalk vs. Frequency

Figure 17. Off Isolation vs. Frequency

Data Sheet

TEST CIRCUITS

Figure 19. On Resistance

Figure 20. Off Leakage

Figure 21. On Leakage

Figure 22. Switching Times

Figure 23. Break-Before-Make Time Delay, $t_{\text {ВВМ }}$ (ADG813 Only)

Figure 24. Charge Injection

Figure 27. Channel-to-Channel Crosstalk

TERMINOLOGY

$I_{D D}$
Positive supply current.
V_{D}, V_{s}
Analog voltage on Terminal D, Terminal S.
Ron
Ohmic resistance between D and S.
$\mathbf{R}_{\text {flat (on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

$\Delta \mathbf{R}_{\text {on }}$

On resistance match between any two channels, that is, $R_{\text {ON }}$ maximum - $\mathrm{R}_{\text {ON }}$ minimum.

Is (Off)

Source leakage current with the switch off.
I_{D} (Off)
Drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
Channel leakage current with the switch on.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}\left(\mathbf{I}_{\text {INH }}\right)$
Input current of the digital input.
C_{s} (Off)
Off switch source capacitance. Measured with reference to ground.
C_{D} (Off)
Off switch drain capacitance. Measured with reference to ground.

$\mathrm{C}_{\mathrm{D}}, \mathrm{Cs}(\mathrm{On})$

On switch capacitance. Measured with reference to ground.
C_{IN}
Digital input capacitance.
ton
Delay time between the 50% and the 90% points of the digital input and switch on condition.
$t_{\text {off }}$
Delay time between the 50% and the 90% points of the digital input and switch off condition.
$\mathbf{t}_{\text {ввм }}$
On or off time measured between the 80% points of both switches, when switching from one to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during on-to-off switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another because of parasitic capacitance.

-3 dB Bandwidth

The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

THD + N

The ratio of the harmonic amplitudes plus noise of a signal to the fundamental.

OUTLINE DIMENSIONS

Figure 28. 16-Lead Thin Shrink Small Outline Package [TSSOP]
($R U-16$)
Dimensions shown in millimeters

Figure 29. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ] $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body, Very Thin Quad (CP-16-2)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG811YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline [TSSOP]	RU-16
ADG811YRU-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline [TSSOP]	RU-16
ADG811YRU-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline [TSSOP]	RU-16
ADG811YRUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline [TSSOP]	RU-16
ADG811YCPZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-16-2
ADG811YCPZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-16-2
ADG812YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline [TSSOP]	RU-16
ADG812YRU-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline [TSSOP]	RU-16
ADG812YRU-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline [TSSOP]	RU-16
ADG812YRUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline [TSSOP]	RU-16
ADG812YRUZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline [TSSOP]	RU-16
ADG813YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline [TSSOP]	RU-16
ADG813YRU-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline [TSSOP]	RU-16
ADG813YRU-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline [TSSOP]	RU-16
ADG813YRUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline [TSSOP]	RU-16

[^3]ADG813
NOTES

$$
\begin{aligned}
& \text { @2003-2009 Analog Devices, Inc. All rights reserved. Trademarks and } \\
& \text { reaistered trademarks are the proverty of their respective owners. }
\end{aligned}
$$

\square

[^0]: ${ }^{1}$ Guaranteed by design, but not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design, but not subject to production test.

[^2]: ${ }^{1}$ Guaranteed by design, but not subject to production test.

[^3]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

