FEATURES

0.8Ω typical on resistance

Less than 1Ω maximum on resistance at $85^{\circ} \mathrm{C}$
1.8 V to 5.5 V single supply

High current carrying capability: $\mathbf{3 0 0} \mathbf{~ m A}$ continuous
Rail-to-rail switching operation
Fast-switching times: <17 ns
Typical power consumption: <0.1 $\mu \mathrm{W}$
$1.30 \mathrm{~mm} \times 1.60 \mathrm{~mm}, 10$-lead mini LFCSP

APPLICATIONS

Cellular phones

PDAs

MP3 players
Power routing
Battery-powered systems
PCMCIA cards

Modems

Audio and video signal routing

Communication systems

GENERAL DESCRIPTION

The ADG852 is a low voltage CMOS single-pole, double-throw (SPDT) switch. This device offers ultralow on resistance of less than 1Ω over the full temperature range. The ADG852 is fully specified for 5.5 V and 3.3 V supply operation.
Each switch conducts equally well in both directions when on, and has an input signal range that extends to the supplies. The ADG852 exhibits break-before-make switching action.

The ADG852 is available in a $1.30 \mathrm{~mm} \times 1.60 \mathrm{~mm}$ 10-lead mini LFCSP.

FUNCTIONAL BLOCK DIAGRAM

NOTES

1. SWITCHES SHOWN FOR A LOGIC 1 INPUT.

Figure 1.

PRODUCT HIGHLIGHTS

1. $<1 \Omega$ over full temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
2. Single 1.8 V to 5.5 V operation.
3. Compatible with 1.8 V CMOS logic.
4. High current handling capability (300 mA continuous current per channel).
5. Low THD $+\mathrm{N}: 0.08 \%$ typical.
6. $1.30 \mathrm{~mm} \times 1.60 \mathrm{~mm}, 10$-lead mini LFCSP.

Rev. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 5
REVISION HISTORY
5/12—Rev. A to Rev. B
Changes to Ordering Guide 13
10/08-Rev. 0 to Rev. A
Change to Title 1
Changes to Features Section 1
Changes to Product Highlights Section. 1
8/08-Revision 0: Initial Version
ESD Caution 5
Pin Configuration and Function Description 6
Typical Performance Characteristics 7
Test Circuits 10
Terminology 12
Outline Dimensions 13
Ordering Guide 13

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V_{DD}	V	
On Resistance, Ron	0.8		Ω typ	$\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{l} \mathrm{lS}=100 \mathrm{~mA}$; see Figure 16
	0.85	1	Ω max	
On Resistance Match Between Channels, \triangle Ron	0.02		Ω typ	$\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{l}_{\mathrm{LS}}=100 \mathrm{~mA}$
		0.04	Ω max	
On Resistance Flatness, Rflat (on)	0.17		$\Omega \operatorname{typ}$	$\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{l}_{\mathrm{DS}}=100 \mathrm{~mA}$
		0.23	Ω max	
LEAKAGE CURRENTS				$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$
Source Off Leakage, Is (Off)	± 10		pA typ	$\mathrm{V}_{S}=0.6 \mathrm{~V} / 4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.2 \mathrm{~V} / 0.6 \mathrm{~V}$; see Figure 17
Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On})$	± 30		pA typ	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0.6 \mathrm{~V}$ or 4.2 V ; see Figure 18
DIGITAL INPUTS				
Input High Voltage, Vinh		2.0	\checkmark min	
Input Low Voltage, VINL		0.8	V max	
Input Current				
lind or linh	0.002		$\mu \mathrm{A}$ typ	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\text {GND }}$ or V_{DD}
		0.05	$\mu \mathrm{A}$ max	
CIN, Digital Input Capacitance	2.5		pF typ	
DYNAMIC CHARACTERISTICS ${ }^{1}$				
ton	17		ns typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	23	28	ns max	$\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V} / 0 \mathrm{~V}$; see Figure 19
toff	6		ns typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	8.5	9.2	ns max	$\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}$; see Figure 19
Break-Before-Make Time Delay, $\mathrm{t}_{\text {BBM }}$	14		ns typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
		8	ns min	$\mathrm{V}_{51}=\mathrm{V}_{52}=1.5 \mathrm{~V}$; see Figure 20
Charge Injection	30		pC typ	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 21
Off Isolation	-75		dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$; see Figure 22
Channel-to-Channel Crosstalk	-73		dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$; see Figure 24
Total Harmonic Distortion, THD + N	0.08		\%	$\mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=3.5 \mathrm{~V} \mathrm{p}-\mathrm{p}$
Insertion Loss	-0.6		dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$; see Figure 23
-3 dB Bandwidth	100		MHz typ	$\mathrm{RL}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$; see Figure 23
C_{s} (Off)	19.5		pF typ	
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	50		pF typ	
POWER REQUIREMENTS ldo	0.002			$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$
			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or 5.5 V
		1.0	$\mu \mathrm{A}$ max	

[^0]
ADG852

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 $\mathrm{V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On Resistance Match Between Channels, Δ Ron On Resistance Flatness, Rflat (on)	$\begin{aligned} & 1.3 \\ & 1.5 \\ & 0.03 \\ & \\ & 0.48 \end{aligned}$	0 V to V_{DD} 1.7 0.05 0.66	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{ldS}=100 \mathrm{~mA}$; see Figure 16 $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.6 \mathrm{~V}, \mathrm{los}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{lDS}=100 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, I_{\mathrm{S}}(\mathrm{On})$	$\begin{array}{r} \pm 10 \\ \pm 30 \end{array}$		pA typ pA typ	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0.6 \mathrm{~V} / 3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3.3 \mathrm{~V} / 0.6 \mathrm{~V} \text {; see Figure } 17 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0.6 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \text {; see Figure } 18 \\ & \hline \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current lindor linh $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	0.002 4	$\begin{aligned} & 1.35 \\ & 0.7 \\ & 0.05 \end{aligned}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {dD }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Break-Before-Make Time Delay, tввм $^{\text {I }}$ Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion, THD Insertion Loss -3 dB Bandwidth C_{s} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & 25 \\ & 37 \\ & 7 \\ & 7.4 \\ & 22 \\ & \\ & 23 \\ & -75 \\ & -73 \\ & 0.15 \\ & -0.07 \\ & 100 \\ & 20 \\ & 52 \\ & \hline \end{aligned}$	43 8 13	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% dB typ MHz typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} / 0 \mathrm{~V} \text {; see Figure } 19 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \text {; see Figure } 19 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=1 \mathrm{~V} \text {; see Figure } 20 \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {; see Figure } 21 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} \text {; see Figure } 22 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} \text {; see Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \mathrm{p}-\mathrm{p} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { see Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF} \text {; see Figure } 23 \end{aligned}$
POWER REQUIREMENTS ID	0.002	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \hline \mathrm{V} D=3.6 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V} \end{aligned}$

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
V $_{\text {DD }}$ to GND	-0.3 V to +6 V
Analog Inputs ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 10 mA,
	whichever occurs first
Peak Current, S or D Pins	500 mA (pulsed at 1 ms,
	10% duty cycle max)
Continuous Current, S or D Pins	300 mA
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Mini LFCSP	
$\quad \theta_{\mathrm{JA}}$ Thermal Impedance,	$131.6^{\circ} \mathrm{C} / \mathrm{W}$
\quad 3-Layer Board	
Reflow Soldering, Pb-Free	$260(+0 /-5)^{\circ} \mathrm{C}$
\quad Peak Temperature	10 sec to 40 sec
\quad Time at Peak Temperature	

[^2]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTION

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	S1	Source Terminal. Can be an input or output.
2	D	Drain Terminal. Can be an input or output.
3	S2	Source Terminal. Can be an input or output.
4	IN	Logic Control Input.
5,6	VDD	Most Positive Power Supply Potential.
$7,8,9$	N/C	No Connect.
10	GND	Ground (0 V) Reference.

Table 5. ADG852 Truth Table		
Logic	Switch 1	Switch 2
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. $V_{D}\left(V_{s}\right), V_{D D}=4.2 \mathrm{~V}$ to 5.5 V

Figure 4. On Resistance vs. $V_{D}\left(V_{S}\right), V_{D D}=2.7 \mathrm{~V}$ to 3.6 V

Figure 5. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, $V_{D D}=5 \mathrm{~V}$

Figure 6. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, $V_{D D}=3.3 \mathrm{~V}$

Figure 7. Leakage Current vs. Temperature, $V_{D D}=5 \mathrm{~V}$

Figure 8. Leakage Current vs. Temperature, $V_{D D}=3.3 \mathrm{~V}$

Figure 9. Charge Injection vs. Source Voltage

Figure 10. $t_{\mathrm{ON}} / t_{\text {off }}$ Times vs. Temperature

Figure 11. Bandwidth

Figure 12. Off isolation vs. Frequency

Figure 13. Crosstalk vs. Frequency

Figure 14. Total Harmonic Distortion + Noise (THD $+N$) vs. Frequency

Figure 15. PSSR vs. Frequency

TEST CIRCUITS

Figure 16. On Resistance

Figure 17. Off Leakage

Figure 18. On Leakage

Figure 19. Switching Times, ton, toff

Figure 20. Break-Before-Make Time Delay, $t_{B B M}$

Figure 21. Charge Injection

Data Sheet

OFF ISOLATION $=20 \log \frac{v_{\text {OUT }}}{v_{S}}$

Figure 22. Off Isolation

Figure 23. Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{v_{\text {OUT }}}{v_{S}}$
K
葉
0

Figure 24. Channel-to-Channel Crosstalk (S1 toS2)

TERMINOLOGY

I_{DD}
Positive supply current.

$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$

Analog voltage on Terminal D and Terminal S.

Ron

Ohmic resistance between Terminal D and Terminal S.
$\mathbf{R}_{\text {FLAT }}$ (On)
The difference between the maximum and minimum values of on resistance as measured on the switch.
$\Delta R_{\text {on }}$
On resistance match between any two channels.
I_{s} (Off)
Source leakage current with the switch off.
I_{D} (Off)
Drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
Channel leakage current with the switch on.
VinL
Maximum input voltage for Logic 0 .
Vinh
Minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathbf{I}_{\text {INH }}\right)$
Input current of the digital input.
C_{s} (Off)
Off switch source capacitance. Measured with reference to ground.

$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)

On switch capacitance. Measured with reference to ground.
$\mathrm{C}_{\text {In }}$
Digital input capacitance.

ton

Delay time between the 50% and 90% points of the digital input and switch on condition.
$t_{\text {off }}$
Delay time between the 50% and 90% points of the digital input and switch off condition.
$\boldsymbol{t}_{\text {Bbм }}$
On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection

Measure of the glitch impulse transferred from the digital input to the analog output during on/off switching.
Off Isolation
Measure of unwanted signal coupling through an off switch.

Crosstalk

Measure of unwanted signal that is coupled from one channel to another as a result of parasitic capacitance.

-3 dB Bandwidth

Frequency at which the output is attenuated by 3 dB .

Insertion Loss

The loss due to the on resistance of the switch.
THD + N
Ratio of the harmonics amplitude plus noise of a signal to the fundamental.

OUTLINE DIMENSIONS

Figure 25. 10-Lead Lead Frame Chip Scale Package [LFCSP_UQ]
$1.30 \mathrm{~mm} \times 1.60 \mathrm{~mm}$ Body, Ultrathin Quad (CP-10-10)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADG852BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Lead Frame Chip Scale Package (LFCSP_UQ)	CP-10-10	F
${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.				

NOTES
Data Sheet

NOTES

NOTES

[^0]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]: ${ }^{1}$ Overvoltages at the IN, S, or D pins are clamped by internal diodes. Current should be limited to the maximum ratings given.

