DESCRIPTIOn

Demonstration circuit 1822B is a dual output synchronous buck converter featuring the LTC®3861EUHE. The board provides two outputs of $1.5 \mathrm{~V} / 25 \mathrm{~A}$ and $1.2 \mathrm{~V} / 25 \mathrm{~A}$ from an input voltage of 7 V to 14 V at a switching frequency of 500 kHz . The power stage consists of a 6 mm $\times 6 \mathrm{~mm}$ DrMOS and a $13 \mathrm{~mm} \times 13 \mathrm{~mm}$ iron powder type inductor. An on-board 5 V LT ${ }^{\circledR} 3470$ buck regulator provides the 5V bias for the LTC3861 and the DrMOS.

The demo board uses a high density, two sided drop-in layout. The power components, excluding the bulk output and input capacitors, fit within a $1.5^{\prime \prime} \times 1.2^{\prime \prime}$ area on the top layer. The control circuit fits in a $1.1^{\prime \prime} \times 1.0^{\prime \prime}$ area on the bottom layer. The package style for the LTC3861EUHE is a 36 -lead $5 \mathrm{~mm} \times 6 \mathrm{~mm}$ QFN.

All registered trademarks and trademarks are the property of their respective owners.

The main features of the board are:

- Remote sensing for each output, where the divider is placed before a high input impedance differential amplifier.
- CLKIN and CLKOUT pins.
- Optional resistors to tie the two outputs together.
- Connector and header to tie two or more boards together for up to 12-phase operation.
- Optional footprint for an LTC4449 gate driver and discrete MOSFETs.
- Optional footprint for a dual phase Delta power block.

Design files for this circuit board are available.

PGRFORMANCE SUMMARY ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$), no a airliow

PARAMETER	CONDITION	VALUE
Minimum Input Voltage		7 V
Maximum Input Voltage		14 V
Output Voltage $\mathrm{V}_{\text {OUT1 }}$	$\mathrm{I}_{\text {OUT1 }}=0 \mathrm{~A}$ to $25 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=7 \mathrm{~V}$ to 14 V	$1.5 \mathrm{~V} \pm 2 \%$
Output Voltage $\mathrm{V}_{\text {OUT2 }}$	$\mathrm{I}_{\text {OUT2 }}=0 \mathrm{~A}$ to $25 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=7 \mathrm{~V}$ to 14 V	$1.2 \mathrm{~V} \pm 2 \%$
$\mathrm{~V}_{\text {OUT1 }}$ Maximum Output Current, $\mathrm{I}_{\text {OUT1 }}$	$\mathrm{V}_{\text {IN }}=7 \mathrm{~V}$ to $14 \mathrm{~V}, \mathrm{~V}_{\text {OUT1 }}=1.5 \mathrm{~V}$	25 A
$\mathrm{~V}_{\text {OUT2 }}$ Maximum Output Current, I $\mathrm{I}_{\text {OUT2 }}$	$\mathrm{V}_{\text {IN }}=7 \mathrm{~V}$ to $14 \mathrm{~V}, \mathrm{~V}_{\text {OUT2 }}=1.2 \mathrm{~V}$	25 A
Nominal Switching Frequency		500 kHz
Efficiency	$\mathrm{V}_{\text {OUT1 }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT1 }}=25 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}$	91.6% Typical
(See Figure 2 and Figure 3)	$\mathrm{V}_{\text {OUT2 }}=1.2 \mathrm{~V}, \mathrm{I}_{\text {OUT2 }}=25 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}$	90.7% Typical

Note: The DC1828B demo circuit and manual replaces the DC1828A. The demo board was modified slightly.

DEMO MANUAL DC1822B

PUICK START PROCEDURE

Demonstration circuit 1822B is easy to set up to evaluate the performance of the LTC3861EUHE. Please refer to Figure 1 for proper measurement equipment setup and follow the procedure below.

1. With power off, connect the input supply, load and meters, as shown in Figure 1. Preset the load to OA and $\mathrm{V}_{\text {IN }}$ supply to be 0 V . Place jumpers in the following positions:

JP1	RUN1	ON
JP2	RUN2	ON
JP3	INT BIAS	ON

2. Adjust the input voltage to be between 7 V to 14 V . VOUT1 should be $1.5 \mathrm{~V} \pm 2 \%$.VOUT2 should be $1.2 \mathrm{~V} \pm 2 \%$.
3. Next, apply 25A load to each output and re-measure VOUT.
4. Once the DC regulation is confirmed, observe the output voltage ripple, load step response, efficiency and other parameters.
NOTE 1. Use the BNC connectors labeled VOUT1 or VOUT2 to measure the output voltage ripple.
NOTE 2. Do not apply the load from the VOS1+ turret to the VOS1- turret or from the VOS2+ turret to the VOS2turret. These are connected to the sense traces for the output voltage. Heavy load currents applied across these turrets may damage these traces.

Figure 1. Proper Measurement Equipment Setup

DEMO MANUAL DC1822B

PUICK START PROCEDURE

DYNAMIC LOAD CIRCUIT (OPTIONAL)

1. Preset the amplitude of a pulse generator to 0.0 V and the duty cycle to 5% or less.
2. Connect the scope to the VOUT BNC connectors for the rail under test with a coax cable. To monitor the load step current, connect the scope probe across the ISTEP \pm turrets for that rail.
3. Connect the output of the pulse generator to the PULSE GEN turret for the rail under test and connect the return to one of the GND turrets.
4. With the converter running, slowly increase the amplitude of the pulse generator output to provide the desired load step pulse height. The scaling for the load step signal is $10 \mathrm{mV} /$ Amp. See Figure 4 and Figure 5 for transient response curves with a 50\% load change.

Figure 2. Efficiency Curves for the 1.5V Rail of the DC1822B. $\mathrm{f}_{\text {Sw }}=500 \mathrm{kHz}$ with the FDMF6820A DrMOS

Figure 3. Efficiency Curves for the 1.2V Rail of the DC1822B. $\mathrm{f}_{\mathrm{Sw}}=500 \mathrm{kHz}$ with the FDMF6820A DrMOS

DEMO MANUAL DC 1822B

QUICK START PROCGDURE

Figure 4. Load Step Response of the DC1822B 1.5V Rail at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$. $C_{\text {OUT }}=3 \times$ Sanyo 2R5TPE330M9 || $2 \times 100 \mu$ F X5R 6.3V 1210, L $=0.47 \mu \mathrm{H}$, $\mathrm{f}_{\text {SW }}=500 \mathrm{kHz}$

Figure 5. Load Step Response of the DC1822B 1.2V Rail at $V_{I N}=12 \mathrm{~V}$. $C_{\text {OUT }}=3 \times$ Sanyo 2R5TPE330M9 || $2 \times 100 \mu \mathrm{~F}$ XR 6.3V 1210, L $=0.47 \mu \mathrm{H}$, $\mathrm{f}_{\text {SW }}=500 \mathrm{kHz}$

SINGLE OUTPUT/DUAL PHASE OPERATION

A single output/dual phase converter may be preferred for higher output current applications. The optional components required to tie the phases together are found on the bottom of the schematic shown in Figure 8. To tie the two outputs together, make the following modifications:

1. Stuff 0Ω at R36 and R47 to tie the two outputs together.
2. Select one rail to be the master.

- If VOUT1 is the master, then stuff 0Ω at R51 to disable the error amplifier for phase 2 . Also stuff 0Ω at R52.
- If VOUT2 is the master, then stuff 0Ω at R49 to disable the error amplifier for phase 1 . Also stuff 0Ω at R50.

3. Remove the 0Ω jumper at R13 and stuff a 100 pF capacitor at C14 for the IAVG signal.
4. Stuff 0Ω at R53, R48 and R54 to tie the COMP, TRK/SS and RUN pins together.
5. Remove the redundant compensation components.

PARALLELING BOARDS

The DC1822B demo boards can be tied together to form a converter with up to 12 phases. To tie the boards together, place the boards side-by-side and then connect the boards by connecting J8 of one board to J9 of the other. This will connect the IAVG, COMP, TRK/SS and signal ground signals together. Next, use copper strips to tie the VOUT planes, the VIN planes and GND planes of the two adjacent boards together. The board has exposed copper along the edges of the board for this purpose. Figure 6 shows how to set up a 4-phase converter and Figure 7 shows how to set up a 3-phase plus single phase converter.

PUICK START PROCEDURE

	VOUT1 TO VOUT2	$\begin{gathered} \text { ILIM1 T0 } \\ \text { VCC } \\ \text { R50 } \end{gathered}$	ILIM1 R R17	$\begin{gathered} \text { ILIM2 TO } \\ \text { VCC } \\ \text { R52 } \end{gathered}$	$\underset{\text { R24 }}{\substack{\text { ILIM R }}}$	$\begin{gathered} \text { FB1 TO } \\ \text { VCC } \\ \text { R49 } \end{gathered}$	$\begin{gathered} \text { FB2 TO } \\ \text { VCC } \\ \text { R51 } \end{gathered}$	$\begin{gathered} \text { TRK/SS1 } \\ \text { TO } \\ \text { TRK/SS2 } \\ \text { R48 } \\ \hline \end{gathered}$	$\begin{gathered} \text { COMP1 } \\ \text { TO } \\ \text { COMP2 } \\ \text { R53 } \\ \hline \end{gathered}$	$\begin{gathered} \text { RUN1 TO } \\ \text { RUN2 } \\ \text { R54 } \end{gathered}$	PHASE MODESETTING		IAVG PIN	
	R36 \& R47										R41	R42	C14	R13
BOARD \#1	$0.0 \mathrm{~m} \Omega$	NS	STUFF	0Ω	NS	NS	0Ω	0Ω	0Ω	0Ω	NS	NS	100pF	NS
BOARD \#2	$0.0 \mathrm{~m} \Omega$	NS	STUFF	0Ω	NS	0Ω	NS	NS	100pF	NS				

Figure 6. Setup of a 4-Phase Converter; Phase 1 of Board 1 is the Master

DEMO MANUAL DC1822B

DUICK START PROCEDURE

	VOUT1 TO VOUT2 R36 \& R47	$\begin{gathered} \text { ILIM1 TO } \\ \text { VCC } \\ \text { R50 } \end{gathered}$	$\begin{gathered} \text { ILIM1 R R } \end{gathered}$	$\begin{aligned} & \text { ILIM2 TO } \\ & \text { VCC } \\ & \text { R52 } \end{aligned}$	$\underset{\text { R24 }}{\text { ILIM2 R }}$	$\begin{gathered} \text { FB1 TO } \\ \text { VCC } \\ \text { R49 } \end{gathered}$	$\begin{gathered} \text { FB2 TO } \\ \text { VCC } \\ \text { R51 } \end{gathered}$	$\begin{gathered} \text { TRK/SS1 } \\ \text { TO } \\ \text { TRK/SS2 } \\ \text { R48 } \end{gathered}$	$\begin{gathered} \text { COMP1 } 1 \\ \text { TOMP2 } \\ \text { COMP2 } \end{gathered}$	$\begin{gathered} \text { RUN1 TO } \\ \text { RUN2 } \\ \text { R54 } \end{gathered}$	PHASE MODESETTING		IAVG PIN	
BOARD \#1	$0.0 \mathrm{~m} \Omega$	NS	STUFF	0Ω	NS	NS	0Ω	0Ω	0Ω	0Ω	NS	NS	100pF	NS
BOARD \#2	NS	NS	STUFF	NS	STUFF	0Ω	NS	NS	NS	NS	0Ω	NS	100pF	NS

Figure 7. Setup of a 3-Phase Plus Single Phase Converter; Phase 1 of Board 1 Is the Master of the 3-Phase Rail

DEMO MANUAL DC1822B

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
DC1822B Required Circuit Components				
1	4	C1, C7, C8, C9	CAP, 0.22 $\mathrm{F}, 10 \%, 25 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}, 0603$	AVX 06033C224KAT2A
2	2	C1-1, C1-2	CAP, 1500pF, 10\%, 50V, GOG, 0603	MURATA,GRM1885C1H152JA01D
3	2	C2-1, C2-2	CAP, 100pF, 5\%, 25V, NPO, 0603	AVX 06033A101JAT2A
4	2	C28, C29	CAP, 10山F, 20\%, 6.3V, X5R, 0805	AVX 08056D106MAT2A
5	4	C3, C11, C34, C35	CAP, $2.2 \mu \mathrm{~F}, 10 \%, 16 \mathrm{~V}, \mathrm{X7R}, 0603$	MURATA GRM188R61C225KE15D
6	2	C3-1, C3-2	CAP, 3300pF, 10\%, 50V X7R, 0603	AVX 06035C332KAT2A
7	1	C6	CAP, 1 1 F, 20\%, 25V, X5R, 0603	AVX 06033D105MAT2A
8	1	CIN2	CAP, 180 1 F, 20\%, 16V, OSCON	SANYO 16SVP180MX
9	4	CIN3, CIN4, CIN5, CIN6	CAP, 22 $\mu \mathrm{F}, 20 \%, 16 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 1210$	AVX 1210YD226MAT2A
10	6	COUT1-COUT3, COUT6-COUT8	CAP, 330 $\mathrm{F}^{\text {, 20\%, 2.5V POSCAP } 7343}$	SANYO 2R5TPE330M9
11	4	COUT4, COUT5, COUT9, COUT10	CAP, 100 $\mathrm{F}, 20 \%, 6.3 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 1210$	AVX 12106D107MAT2A
12	2	L1,L2	IND, $0.47 \mu \mathrm{H}, 20 \%$	WURTH 744355147
13	2	R1, R45	RES, 18.2k, 1\%, 1/10W, 0603	VISHAY CRCW060318K2FKEA
14	4	R11, R18, R39, R43	RES, 10, , 1\%, 1/10W, 0603	VISHAY CRCW060310ROFKEA
15	2	R17, R24	RES, 53.6k, 1\%, 1/10W, 0603	VISHAY CRCW060353K6FKEA
16	2	R2, R25	RES, $2.2 \Omega, 1 \%, 1 / 16 \mathrm{~W}, 0603$	VISHAY CRCW06032R20FKEA
17	2	R20, R38	RES, 2.87k, 1\%, 1/10W, 0603	VISHAY CRCW06032K87FKEA
18	1	R2-1	RES, $9.76 \mathrm{k}, 1 \%, 1 / 16 \mathrm{~W}, 0603$	VISHAY CRCW06039K76FKEA
19	1	R2-2	RES, 9.31k, 1\%, 1/16W, 0603	VISHAY CRCW06039K31FKEA
20	3	R3, R16, R26	RES, $1 \Omega, 1 \%, 1 / 10 \mathrm{~W}, 0603$	YAGEO RC0603FR-071RL
21	2	R3-1, R3-2	RES, $280 \Omega, 1 \%, 1 / 10 \mathrm{~W}, 0603$	VISHAY CRCW0603280RFKEA
22	1	R37	RES, 34k, 1\%, 1/10W, 0603	VISHAY CRCW060334KOFKEA
23	2	R8, R44	RES, 100k, 1\%, 1/10W, 0603	VISHAY CRCW0603100KFKEA
24	9	$\begin{aligned} & \text { R9, R12, R13, R19, R21-R23, } \\ & \text { R32, R73 } \end{aligned}$	RES, 0Ω, JUMPER, 0603	VISHAY CRCW06030000Z0EA
25	11	$\begin{aligned} & \text { RB-1, RB-2, RT-2, R1-1, R1-2, R4-R6, } \\ & \text { R29, R30, R46 } \end{aligned}$	RES, 10k, 1\%, 1/10W, 0603	VISHAY CRCW060310KOFKEA
26	1	RT-1	RES, 15k, 1\%, 1/10W, 0603	YAGEO RC0603FR-0715KL
27	1	U1	I.C., LTC3861EUHE	ANALOG DEVICES LTC3861EUHE\#PBF
28	2	U2, U3	MOSFET, DrMOS, DC-DC, 3.3V, PWM	FAIRCHILD FDMF6820A
Additional Circuit Components				
1	1	C17	CAP, 0.22 ${ }^{\text {F }}$, 10\%, 25V, X7R, 0603	AVX 06033C224KAT2A
2	1	C18	CAP, 1 1 F, 20\%, 25V, X5R, 0603	AVX 06033D105MAT2A
3	1	C19	CAP, 22 F , 20\%, 16V, X5R, 1210	AVX 1210YD226MAT2A
4	2	$\begin{aligned} & \text { C2, C4, C5, C10, C12-C16, C20, C22- } \\ & \text { C25, C27, C30-C33 } \end{aligned}$	CAP, 0603	OPT
5	1	C21	CAP, 22pF, 10\%, 25V, NPO, 0603	AVX 06033A220KAT2A
6	1	C26	CAP, 1 1 F, 20\%, 25V, X5R, 0603	AVX 06033D105MAT2A
7	0	CIN1	CAP, SVP, F8	OPT
8	0	CIN7-CIN14, COUT11-COUT17	CAP, 1210	OPT
9	0	COUT15-COUT17, COUT22-COUT24	CAP, 7343	OPT
10	0	D1	DIODE, BAV170, S0T23	OPT

DEMO MANUAL DC1822B

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
11	0	D2, D3	CMDSH-3	OPT
12	1	L3	IND, 33 ${ }^{\text {H, }}$, -53DLC	TOKO A914BYW-330M=P3
13	0	L4	INDUCTOR, -53LDC	OPT
14	0	PB1	DC/DC Converters, D12S1R845A	OPT
15	2	Q1, Q2	MOSFET, 30V N-CHANNEL, DPAK	VISHAY SUD50N03-12P-E3
16	0	Q3, Q4, Q7, Q8	BSC050NE2LS	OPT
17	0	Q5, Q6, Q9, Q10	BSC010NE2LS	OPT
18	0	R10, R14, R15, R27, R28, R31, R33R35, R41, R42, R47-R55, R62, R64R67, R69, R71, R72, R74-R81	RES, 0603	OPT
19	2	R56, R58	RES, 10k, 1\%, 1/10W, 0603	VISHAY CRCW060310K0FKEA
20	2	R57, R60	RES, $0.010 \Omega, 1 \%, 1 \mathrm{~W}, 2010$	IRC LRC-LRF2010LF-01-R010-F
21	1	R59	RES, 0Ω, JUMPER, 1206	VISHAY CRCW12060000ZOEA
22	1	R61	RES, 604k, 1\%, 1/16W, 0603	VISHAY CRCW0603604KFKEA
23	1	R63	RES, 200k, 1\%, 1/16W, 0603	VISHAY CRCW0603200KFKEA
24	1	U4	BUCK REGULATOR, LT3470ETS8	ANALOG DEVICES LT3470ETS8
25	0	U5	BUCK REGULATOR, LT3470ETS8	OPT
26	0	U8, U9	N-CHANNEL MOSFET DRIVER, LTC4449	OPT
Hardware				
1	27	E1-E27	TESTPOINT, TURRET, 0.095"	MILL-MAX 2501-2-00-80-00-00-07-0
2	6	J1-J6	STUD, TEST PIN	PEM KFH-032-10
3	12	J1-J6	NUT, BRASS PL \#10-32	ANY \#10-32M/S
4	6	J1-J6	RING, LUG \#10	KEYSTONE 8205
5	6	J1-J6	WASHER, TIN, PLATED BRASS	ANY
6	2	J7, J10	CON, BNC, 5 PINS	CONNEX 112404
7	1	J8	HEADER, DOBL ROW, RT ANGLE, 2×4, 8 PIN	MILL-MAX 802-10-008-20-001000
8	1	J9	SOCKET, DBL ROW, RT ANGLE, 2×4, 8 PIN	MILL-MAX 803-43-008-20-001000
9	4	JP1, JP2, JP3, JP4	HEADER, 3 PIN, 0.079" SINGLE ROW	SAMTEC TMM-103-02-L-S
10	4	MTGS AT 4 CORNERS	STAND-OFF, NYLON 0.5"	KEYSTONE 8833 (SNAP-ON)
11	4	XJP1, XJP2, XJP3, XJP4	SHUNT, 0.079" CENTER	SAMTEC 2SN-BK-G

SCHEMATIC DIAGRAM

Figure 8. DC1822B Demo Circuit Schematic

DEMO MANUAL DC1822B

SCHEMATIC DIAGRAM

Figure 9. DC1822B Demo Circuit Schematic

SCHEMATIC DIAGRAM

Figure 10. DC1822B Demo Circuit Schematic

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($\$ 100.00$). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed

