Data Sheet

FEATURES

1Ω typical on resistance

0.2Ω on resistance flatness
$\pm 3.3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ dual-supply operation
3.3 V to 16 V single-supply operation

No V_{L} supply required
3 V logic-compatible inputs
Rail-to-rail operation
Continuous current per channel
LFCSP: 504 mA
TSSOP: 315 mA
14-lead TSSOP and 16-lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP

APPLICATIONS

Communication systems

Medical systems

Audio signal routing
Video signal routing
Automatic test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Relay replacements

GENERAL DESCRIPTION

The ADG1604 is a complementary metal-oxide semiconductor (CMOS) analog multiplexer and switches one of four inputs to a common output, D , as determined by the 3-bit binary address lines, $\mathrm{A} 0, \mathrm{~A} 1$, and EN. Logic 0 on the EN pin disables the device. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.
The ultralow on resistance of these switches make them ideal solutions for data acquisition and gain switching applications where low on resistance and distortion is critical. The on resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The CMOS construction ensures ultralow power dissipation, making the devices ideally suited for portable and batterypowered instruments.

PRODUCT HIGHLIGHTS

1. 1.6Ω maximum on resistance over temperature.
2. Minimum distortion: THD $+\mathrm{N}=0.007 \%$.
3. 3 V logic-compatible digital inputs: $\mathrm{V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$.
4. No V_{L} logic power supply required.
5. Ultralow power dissipation: $<16 \mathrm{nW}$.
6. 14-lead TSSOP and 16 -lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP.

Rev. B

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 5 V Dual Supply 3
12 V Single Supply 4
5 V Single Supply 5
3.3 V Single Supply 6
REVISION HISTORY
3/16-Rev. A to Rev. B
Changed CP-16-13 to CP-16-26

\qquad
Throughout
Changes to Figure 2, Figure 3, and Table 7 9
Updated Outline Dimensions 17
Changes to Ordering Guide 17
9/09—Rev. 0 to Rev. AChanges to On Resistance (Ron) Parameter, On ResistanceMatch Between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) Parameter, and On ResistanceFlatness ($\mathrm{R}_{\text {flaton }}$) Parameter, Table 4
Continuous Current per Channel, S or D7
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configurations and Function Descriptions 9
Typical Performance Characteristics. 10
Test Circuits 13
Terminology 16
Outline Dimensions 17
Ordering Guide 17

1/09—Revision 0: Initial Version

SPECIFICATIONS

± 5 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$V_{D D}$ to $V_{S S}$	V	
On Resistance (Ron)	1			Ω typ	$\mathrm{V}_{\mathrm{s}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$; see Figure 22
	1.2	1.4	1.6	Ω max	$\mathrm{V}_{\mathrm{DD}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{S S}= \pm 4.5 \mathrm{~V}$
On Resistance Match Between Channels (Δ Ron)	0.04			$\Omega \operatorname{typ}$	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
	0.08	0.09	0.1	Ω max	
On Resistance Flatness (Rflation)	0.2			Ω typ	$\mathrm{V}_{\mathrm{s}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	0.25	0.29	0.34	Ω max	
LEAKAGE CURRENTS					$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5.5 \mathrm{~V}$
Source Off Leakage, Is (Off)	± 0.1			$n A$ typ	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$; see Figure 23
	± 0.2	± 1	± 8	nA max	
Drain Off Leakage, l_{D} (Off)	± 0.1			nA typ	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$; see Figure 23
	± 0.2	± 2	± 16	nA max	
Channel On Leakage, lo, Is (On)	± 0.2			nA typ	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}$; see Figure 24
	± 0.4	± 2	± 16	nA max	
DIGITAL INPUTS					
Input High Voltage, $\mathrm{V}_{\text {INH }}$			2.0	\checkmark min	
Input Low Voltage, $\mathrm{V}_{\text {INL }}$			0.8	V max	
Input Current, IINL or $\mathrm{linh}^{\text {a }}$	0.005			$\mu A \operatorname{typ}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {GND }}$ or V_{DD}
			± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{Cl}_{\text {IN }}$	8			pF typ	
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, ttransition	150			ns typ	$\mathrm{RL}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	278	336	376	ns max	$\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}$; see Figure 29
ton (EN)	116			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	146	166	177	ns max	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$; see Figure 31
toff (EN)	186			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	234	277	310	ns max	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$; see Figure 31
Break-Before-Make Time Delay, t_{D}	50			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			28.5	ns min	$\mathrm{V}_{51}=\mathrm{V}_{52}=2.5 \mathrm{~V}$; see Figure 30
Charge Injection	140			pC typ	$\mathrm{V}_{s}=0 \mathrm{~V}, \mathrm{R}_{s}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 32
Off Isolation	70			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 25
Channel-to-Channel Crosstalk	70			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 27
Total Harmonic Distortion + Noise (THD + N)	0.007			\% typ	$\begin{aligned} & \mathrm{RL}=110 \Omega, 5 \mathrm{~V}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} ; \\ & \text { see Figure } 28 \end{aligned}$
-3 dB Bandwidth	15			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 26
C_{5} (Off)	63			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)	270			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D},} \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	360			pF typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS IDD					$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5.5 \mathrm{~V}$
	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
			1.0	$\mu \mathrm{A}$ max	
$V_{\text {DD }} / V_{S S}$			$\pm 3.3 / \pm 8$	V min/max	

[^0]
ADG1604

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V_{DD}	V	
On Resistance (Ros)	0.95			Ω typ	$\mathrm{V}_{5}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$; see Figure 22
	1.1	1.25	1.45	Ω max	$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$
On Resistance Match Between Channels (Δ Ros)	0.03			Ω typ	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
	0.06	0.07	0.08	Ω max	
On Resistance Flatness (Rflation)	0.2			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	0.23	0.27	0.32	Ω max	
LEAKAGE CURRENTS Source Off Leakage, Is (Off)					$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$
	± 0.1			nA typ	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 23
	± 0.2	± 1	± 8	nA max	
Drain Off Leakage, ID (Off)	± 0.1			nA typ	$\mathrm{V}_{\mathrm{s}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 23
	± 0.2	± 2	± 16	$n A \max$	
Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\text {(}}(\mathrm{On})$	± 0.2			nA typ	$V_{S}=V_{D}=1 \mathrm{~V}$ or 10 V ; see Figure 24
	± 0.4	± 2	± 16	nA max	
DIGITAL INPUTS					
Input High Voltage, V ${ }_{\text {INH }}$			2.0	\checkmark min	
Input Low Voltage, $\mathrm{V}_{\text {INL }}$			0.8	V max	
Input Current, IInl or linh	0.001			$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
			± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{Cl}_{\text {IN }}$	8			pF typ	
DYNAMIC CHARACTERISTICS¹					
Transition Time, ttransition	100			ns typ	$\mathrm{RL}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	161	192	220	ns max	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 29
ton (EN)	80			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	95	104	111	ns max	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$; see Figure 31
toff (EN)	144			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	173	205	234	ns max	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 31
Break-Before-Make Time Delay, t_{D}	25			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			18	ns min	$\mathrm{V}_{51}=\mathrm{V}_{52}=8 \mathrm{~V}$; see Figure 30
Charge Injection	125			pC typ	$\mathrm{V}_{s}=6 \mathrm{~V}, \mathrm{R}_{s}=0 \Omega, \mathrm{CL}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 32
Off Isolation	70			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 25
Channel-to-Channel Crosstalk	70			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 27
Total Harmonic Distortion + Noise	0.013			\% typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=110 \Omega, 5 \mathrm{~V} p-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \text {; } \\ & \text { see Figure } 28 \end{aligned}$
-3 dB Bandwidth	19			MHz typ	$\mathrm{R}_{L}=50 \Omega, C_{L}=5 \mathrm{pF}$; see Figure 26
Cs_{5} (Off)	60			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)	270			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{S}(\mathrm{On})$	350			pF typ	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$
IdD	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
			1	$\mu \mathrm{A}$ max	
IDD	230			$\mu \mathrm{A}$ typ	Digital inputs $=5 \mathrm{~V}$
			360	$\mu \mathrm{A}$ max	
VDD			3.3/16	V min/max	

[^1]
5 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V_{DD}	V	
On Resistance (Ron)	1.7			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to 4.5 V , $\mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$; see Figure 22
	2.15	2.4	2.7	Ω max	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
On Resistance Match Between Channels (Δ Row)	0.05			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	0.09	0.12	0.15	Ω max	
On Resistance Flatness (Rflation)	0.4			$\Omega \operatorname{typ}$	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	0.53	0.55	0.6	Ω max	
LEAKAGE CURRENTS Source Off Leakage, Is (Off)					$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
	± 0.05			nA typ	$\mathrm{V}_{5}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 23
	± 0.2	± 1	± 8	nA max	
Drain Off Leakage, I_{D} (Off)	± 0.05			nA typ	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 23
	± 0.2	± 2	± 16	nA max	
Channel On Leakage, ID, Is (On)	± 0.1			nA typ	$\mathrm{V}_{S}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}$ or 4.5 V ; see Figure 24
	± 0.4	± 2	± 16	nA max	
DIGITAL INPUTS					
Input High Voltage, $\mathrm{V}_{\text {INH }}$			2.0	\checkmark min	
Input Low Voltage, VINL			0.8	V max	
Input Current, linl or linh	0.001			$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
			± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	8			pF typ	
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, ttransition	175			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	283	337	380	ns max	$\mathrm{V}_{5}=2.5 \mathrm{~V}$; see Figure 29
ton (EN)	135			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{L}=35 \mathrm{pF}$
	174	194	212	ns max	$\mathrm{V}_{5}=2.5 \mathrm{~V}$; see Figure 31
toff (EN)	228			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	288	342	385	ns max	$\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}$; see Figure 31
Break-Before-Make Time Delay, t_{D}	30			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, C_{L}=35 \mathrm{pF}$
			21	ns min	$\mathrm{V}_{51}=\mathrm{V}_{52}=2.5 \mathrm{~V}$; see Figure 30
Charge Injection	70			pC typ	$\mathrm{V}_{S}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 32
Off Isolation	70			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ;$ $\text { see Figure } 25$
Channel-to-Channel Crosstalk	70			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ;$ see Figure 27
Total Harmonic Distortion + Noise	0.09			\% typ	$\mathrm{RL}=110 \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{s}}=3.5 \mathrm{Vp}-\mathrm{p} ;$ $\text { see Figure } 28$
-3 dB Bandwidth	16			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 26
C_{5} (Off)	70			pF typ	$\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)	300			pF typ	$\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	400			pF typ	$\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$
IDD	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\text {D }}$
			1	$\mu \mathrm{A}$ max	
$V_{D D}$			3.3/16	\checkmark min/max	

[^2]
ADG1604

3.3 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

[^3]
CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 5.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, S OR D				
$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=150.4^{\circ} \mathrm{C} / \mathrm{W}$)	315	189	95	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	504	259	112	mA maximum
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
$\operatorname{TSSOP}\left(\theta_{\mathrm{JA}}=150.4^{\circ} \mathrm{C} / \mathrm{W}\right)$	378	221	112	mA maximum
LFCSP ($\theta_{\text {JA }}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	627	311	126	mA maximum
$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=150.4^{\circ} \mathrm{C} / \mathrm{W}$)	249	158	91	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	403	224	105	mA maximum
$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=150.4^{\circ} \mathrm{C} / \mathrm{W}$)	256	165	98	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	410	235	116	mA maximum

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 6.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	18 V
VDD to GND	-0.3 V to +18 V
$V_{\text {ss }}$ to GND	+0.3 V to -18 V
Analog Inputs ${ }^{1}$	$V_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	GND - 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D	1150 mA (pulsed at 1 ms , 10\% duty-cycle maximum)
Continuous Current, S or D ${ }^{2}$	Data + 15\%
Operating Temperature Range Industrial (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$ Thermal Impedance	
16-Lead TSSOP, 2-Layer Board	$150.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP, 4-Layer Board	$48.7^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb free	$260^{\circ} \mathrm{C}$

[^4]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. 14-Lead TSSOP Pin Configuration

Figure 3. 16-Lead LFCSP Pin Configuration

Table 7. Pin Function Descriptions

Pin No.		Mnemonic	Description
14-Lead TSSOP	16-Lead LFCSP		
1	15	A0	Logic Control Input.
2	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, the Ax logic inputs determine the on switch.
3	1	$\mathrm{V}_{\text {ss }}$	Most Negative Power Supply Potential.
4	3	S1	Source Terminal. This pin can be an input or output.
5	4	S2	Source Terminal. This pin can be an input or output.
6	6	D	Drain Terminal. This pin can be an input or output.
7,8,9	2, 5, 7, 8, 13	NIC	No Internal Connection.
10	9	S4	Source Terminal. This pin can be an input or output.
11	10	S3	Source Terminal. This pin can be an input or output.
12	11	$V_{\text {DD }}$	Most Positive Power Supply Potential.
13	12	GND	Ground (0V) Reference.
14	14	A1	Logic Control Input.
N/A ${ }^{1}$	0	EPAD	Exposed Pad. Tie the exposed pad to the substrate, $\mathrm{V}_{\text {ss }}$.

${ }^{1}$ N/A means not applicable.
Table 8. ADG1604 Truth Table

EN	A1	A0	S1	S2	S3	S4
0	X	X	0	Off	Off	Off
1	0	On	Off	Off	Off	
1	1	0	Off	Off		
1	1	1	Off	Off	Off	
1	1	Off	On	Off		

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

Figure 6. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, ± 5 V Dual Supply

Figure 7. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, 12 V Single Supply

Figure 8. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, 5 V Single Supply

Figure 9. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, 3.3 V Single Supply

Figure 10. Leakage Currents as a Function of Temperature, ± 5 V Dual Supply

Figure 11. Leakage Currents as a Function of Temperature, 12 V Single Supply

Figure 12. Leakage Currents as a Function of Temperature, 5 V Single Supply

Figure 13. Leakage Currents as a Function of Temperature, 3.3 V Single Supply

Figure 14. IDD vs. Logic Level

Figure 15. Charge Injection vs. Source Voltage

Figure 16. $t_{\mathrm{o}} / t_{\text {off }}$ Times vs. Temperature

Figure 17. Off Isolation vs. Frequency

Figure 18. Crosstalk vs. Frequency

Figure 19. On Response vs. Frequency

Figure 20. ACPSRR vs. Frequency

Figure 21. $T H D+N$ vs. Frequency

TEST CIRCUITS

Figure 22. On Resistance

Figure 23. Off Leakage

Figure 24. On Leakage

Figure 25. Off Isolation

Figure 26. Bandwidth

Figure 27. Channel-to-Channel Crosstalk

Figure 28. THD + Noise

Data Sheet

Figure 31. Enable-to-Output Switching Delay

TERMINOLOGY

IDD
The positive supply current.
Iss
The negative supply current.

$V_{D}\left(V_{s}\right)$

The analog voltage on Terminal D and Terminal S .
$\mathbf{R}_{\text {ON }}$
The ohmic resistance between Terminal D and Terminal S.
$\mathbf{R}_{\text {FLat(ON) }}$
Flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

IS (Off)

The source leakage current with the switch off.

I_{D} (Off)

The drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
The channel leakage current with the switch on.
$V_{\text {INL }}$
The maximum input voltage for Logic 0.
$V_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\mathrm{INH}}\right)$
The input current of the digital input.
C_{s} (Off)
The off switch source capacitance, which is measured with reference to ground.
C_{D} (Off)
The off switch drain capacitance, which is measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)
The on switch capacitance, which is measured with reference to ground.
C_{IN}
The digital input capacitance.
t transition
The delay time between the 50% and 90% points of the digital input and switch on condition when switching from one address state to another. See Figure 29.
$t_{\text {ON }}$ (EN)
The delay between applying the digital control input and the output switching on. See Figure 31.
$t_{\text {OFF }}$ (EN)
The delay between applying the digital control input and the output switching off. See Figure 31.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching. See Figure 32.

Off Isolation

A measure of unwanted signal coupling through an off switch. See Figure 25.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance. See Figure 27.

Bandwidth

The frequency at which the output is attenuated by 3 dB . See Figure 26.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.
Total Harmonic Distortion + Noise (THD + N)
The ratio of the harmonic amplitude plus noise of the signal to the fundamental. See Figure 28.

AC Power Supply Rejection Ratio (ACPSRR)

The ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

OUTLINE DIMENSIONS

Figure 33. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14)
Dimensions shown in millimeters

Figure 34. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-16-26)
Dimensions shown in millimeters
ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG1604BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1604BRUZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1604BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1604BCPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26
ADG1604BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26

[^5]
ADG1604

NOTES

Data Sheet	ADG1604

NOTES

NOTES

[^0]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^3]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^4]: ${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.
 ${ }^{2}$ See Table 5.

[^5]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part

