## FEATURES

1 pF off capacitance<br>2.6 pF on capacitance<br>$<1 \mathrm{pC}$ charge injection<br>33 V supply range<br>$120 \Omega$ on resistance<br>Fully specified at $\pm 15 \mathrm{~V},+12 \mathrm{~V}$<br>No $V_{L}$ supply required<br>3 V logic-compatible inputs<br>Rail-to-rail operation<br>16-lead TSSOP<br>Typical power consumption: <0.03 $\boldsymbol{\mu W}$

## ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
Military temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Controlled manufacturing baseline
1 assembly/test site
1 fabrication site
Product change notification
Qualification data available on request

## APPLICATIONS

Automatic test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Audio signal routing
Video signal routing
Communication systems

## GENERAL DESCRIPTION

The ADG1212-EP is a monolithic complementary metal-oxide semiconductor (CMOS) device containing four independently selectable switches designed on an CMOS $^{\circledR}$ (industrial CMOS) process. $i$ CMOS is a modular manufacturing process combining high voltage CMOS and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, iCMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

## FUNCTIONAL BLOCK DIAGRAM



NOTES

1. SWITCHES SHOWN ARE FOR LOGIC 1 INPUT.

Figure 1.

The ultralow capacitance and charge injection of this switch makes it an ideal solution for data acquisition and sample-andhold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth makes the part suitable for video signal switching.
$i$ CMOS construction ensures ultralow power dissipation, making the part ideally suited for portable and battery-powered instruments.
The ADG1212-EP contains four independent single-pole/ single-throw (SPST) switches. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

Additional application and technical information can be found in the ADG1212 data sheet.

## PRODUCT HIGHLIGHTS

1. Ultralow capacitance.
2. $<1 \mathrm{pC}$ charge injection.
3. 3 V logic compatible digital inputs: $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$.
4. No $V_{L}$ logic power supply required.
5. Ultralow power dissipation: $<0.03 \mu \mathrm{~W}$.
6. 16-lead TSSOP package.

## ADG1212-EP

## TABLE OF CONTENTS

Single Supply .....  .4
Absolute Maximum Ratings .....  5
ESD Caution .....  5
Pin Configuration and Function Descriptions .....  6
Typical Performance Characteristics. .....  7
Test Circuits .....  9
Outline Dimensions ..... 11
Ordering Guide ..... 11

## REVISION HISTORY

## 5/2018—Rev. A to Rev. B

Change to Enhanced Product Features Section .......................... 1
Changes to Ordering Guide ....................................................... 11

## 7/2012—Rev. 0 to Rev. A

Changed Operating Temperature Range from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
to $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; Table 3

## 11/2011-Revision 0: Initial Version

## ADG1212-EP

## SPECIFICATIONS

## DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.


[^0]
## ADG1212-EP

## SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

| Parameter | $25^{\circ} \mathrm{C}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH <br> Analog Signal Range <br> On Resistance (Ron) <br> On Resistance Match Between Channels ( $\Delta$ Ron) <br> On Resistance Flatness (Rflat(on)) | $\begin{aligned} & 300 \\ & 475 \\ & 4.5 \\ & 12 \\ & 60 \end{aligned}$ | 26 | 0 V to $\mathrm{V}_{\mathrm{DD}}$ <br> 625 <br> 27 |  | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} ; \text { see Figure } 15 \\ & \mathrm{~V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 6 \mathrm{~V} / 9 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \end{aligned}$ |
| LEAKAGE CURRENTS <br> Source Off Leakage, Is (Off) <br> Drain Off Leakage, lo (Off) <br> Channel On Leakage, ID, Is (On) | $\begin{aligned} & \pm 0.02 \\ & \pm 0.1 \\ & \pm 0.02 \\ & \pm 0.1 \\ & \pm 0.02 \\ & \pm 0.1 \end{aligned}$ | $\begin{aligned} & \pm 0.6 \\ & \pm 0.6 \\ & \pm 0.6 \end{aligned}$ | $\pm 1$ $\pm 1$ $\pm 1$ | nA typ nA max nA typ nA max nA typ nA max | $\begin{aligned} & V_{D D}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 11 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 11 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 10 \mathrm{~V} \text {; see Figure } 12 \end{aligned}$ |
| DIGITAL INPUTS <br> Input High Voltage, $\mathrm{V}_{\text {INH }}$ <br> Input Low Voltage, VinL <br> Input Current, $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{NH}}$ <br> Digital Input Capacitance, $\mathrm{C}_{\mathrm{IN}}$ | $\begin{aligned} & 0.001 \\ & 3 \end{aligned}$ |  | $\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$ | $\vee$ min <br> V max <br> $\mu A$ typ <br> $\mu \mathrm{A}$ max <br> pF typ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$ |
| DYNAMIC CHARACTERISTICS ${ }^{1}$ <br> ton <br> toff <br> Charge Injection <br> Off Isolation <br> Channel-to-Channel Crosstalk <br> -3 dB Bandwidth <br> $\mathrm{C}_{\mathrm{s}}$ (Off) <br> $C_{D}$ (Off) <br> $C_{\mathrm{d}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$ | $\begin{aligned} & 80 \\ & 105 \\ & 90 \\ & 115 \\ & 0 \\ & 80 \\ & 90 \\ & 900 \\ & 1.2 \\ & 1.4 \\ & 1.3 \\ & 1.5 \\ & 3.2 \\ & 3.9 \end{aligned}$ | 125 <br> 140 | 140 165 | ns typ ns max ns typ ns max pC typ dB typ dB typ MHz typ pF typ pF max pF typ pF max pF typ pF max |  |
| POWER REQUIREMENTS ID IDD | $\begin{aligned} & 0.001 \\ & 220 \end{aligned}$ |  | 1.0 420 | $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu A$ typ $\mu \mathrm{A} \max$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \\ & \text { Digital inputs }=5 \mathrm{~V} \end{aligned}$ |

[^1]
## ADG1212-EP

## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

| Parameter | Rating |
| :---: | :---: |
| $\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{\text {SS }}$ | 35 V |
| $V_{\text {DD }}$ to GND | -0.3 V to +25 V |
| $V_{\text {ss }}$ to GND | +0.3 V to -25 V |
| Analog Inputs ${ }^{1}$ | $\mathrm{V}_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first |
| Digital Inputs ${ }^{1}$ | $\begin{aligned} & \mathrm{GND}-0.3 \mathrm{~V} \text { to } \\ & \mathrm{V} D \mathrm{D}+0.3 \mathrm{~V} \text { or } 30 \mathrm{~mA}, \end{aligned}$ whichever occurs first |
| Peak Current, S or D | 100 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum) |
| Continuous Current per Channel, S or D | 25 mA |
| Operating Temperature Range | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Junction Temperature | $150^{\circ} \mathrm{C}$ |
| 16-Lead TSSOP, $\theta_{\text {JA }}$ Thermal Impedance (4-Layer Board) | $112^{\circ} \mathrm{C} / \mathrm{W}$ |
| Lead Temperature, Soldering | As per JEDEC J-STD-020 |

[^2]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating may be applied at any one time.

Table 4. ADG1212-EP Truth Table

| ADG1212-EP INx | Switch Condition |
| :--- | :--- |
| 1 | On |
| 0 | Off |

## ESD CAUTION

|  | ESD (electrostatic discharge) sensitive device. <br> Charged devices and circuit boards can discharge <br> without detection. Although this product features <br> patented or proprietary protection circuitry, damage <br> may occur on devices subjected to high energy ESD. <br> Therefore, proper ESD precautions should be taken to <br> avoid performance degradation or loss of functionality. |
| :--- | :--- |

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

|  | - |  |
| :---: | :---: | :---: |
| IN1 1 |  | 16 IN 2 |
| D1 2 |  | 15 D2 |
| S1 3 |  | 14 s 2 |
| $\mathrm{v}_{\text {SS }} 4$ | ADG1212-EP <br> TOP VIEW (Not to Scale) | $13 \mathrm{~V} D$ |
| GND 5 |  | 12 NC |
| S4 6 |  |  |
| D4 7 |  | 10 D 3 |
| IN4 8 |  | 9 IN3 |
| NOTES |  |  |
| 1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN. |  |  |
|  |  |  |  |
| Figure 2. Pin Configuration |  |  |

Table 5. Pin Function Descriptions

| Pin No. | Mnemonic | Description |
| :--- | :--- | :--- |
| 1 | IN1 | Logic Control Input. |
| 2 | D1 | Drain Terminal. This pin can be an input or output. |
| 3 | S1 | Source Terminal. This pin can be an input or output. |
| 4 | VSS | Most Negative Power Supply Potential. |
| 5 | GND | Ground (0 V) Reference. |
| 6 | S4 | Source Terminal. This pin can be an input or output. |
| 7 | D4 | Drain Terminal. This pin can be an input or output. |
| 8 | IN4 | Logic Control Input. |
| 9 | IN3 | Logic Control Input. |
| 10 | D3 | Drain Terminal. This pin can be an input or output. |
| 11 | S3 | Source Terminal. This pin can be an input or output. |
| 12 | NC | No Connection. |
| 13 | VDD | Most Positive Power Supply Potential. |
| 14 | S2 | Source Terminal. This pin can be an input or output. |
| 15 | D2 | Drain Terminal. This pin can be an input or output. |
| 16 | IN2 | Logic Control Input. |

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply


Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply


Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply


Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply


Figure 7. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply


Figure 8. Leakage Currents as a Function of Temperature, Dual Supply


Figure 9. Leakage Currents as a Function of Temperature, Single Supply


Figure 10. $t_{0} / t_{\text {off }}$ Times vs. Temperature

## TEST CIRCUITS



Figure 11. Off Leakage


Figure 12. On Leakage


Figure 13. Off Isolation


CHANNEL-TO-CHANNEL CROSSTALK $=20$ LOG $\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$
Figure 14. Channel-to-Channel Crosstalk


Figure 15. On Resistance


Figure 17. THD + Noise


Figure 18. Switching Times


Figure 19. Charge Injection

## Enhanced Product

## OUTLINE DIMENSIONS



Figure 20. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters

## ORDERING GUIDE

| Model $^{1}$ | Temperature Range | Package Description | Package Option |
| :--- | :--- | :--- | :--- |
| ADG1212SRU-EP-RL7 | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16 -Lead Thin Shrink Small Outline Package [TSSOP] | RU-16 |
| ADG1212SRUZ-EP-RL7 | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16 -Lead Thin Shrink Small Outline Package [TSSOP] | RU-16 |

[^3]
## ADG1212-EP

## NOTES


[^0]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]:    ${ }^{1}$ Overvoltages at $\mathrm{IN}, \mathrm{S}$, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

[^3]:    ${ }^{1} Z=$ RoHS Compliant Part

