Data Sheet

FEATURES

Operates from 1.65 V to 3.6 V supply rails
Bidirectional level translation, unidirectional signal path
8-lead SOT-23 and MSOP packages
Bypass or normal operation
Short circuit protection

APPLICATIONS

JTAG chain bypassing
Daisy-chain bypassing
Digital switching

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

GENERAL DESCRIPTION

The ADG3233 ${ }^{1}$ is a bypass switch designed on a submicron process that operates from supplies as low as 1.65 V . The device is guaranteed for operation over the supply range 1.65 V to 3.6 V . It operates from two supply voltages, allowing bidirectional level translation, that is, it translates low voltages to higher voltages and vice versa. The signal path is unidirectional, meaning data may only flow from $\mathrm{A} \rightarrow \mathrm{Y}$.
This type of device may be used in applications that require a bypassing function. It is ideally suited to bypassing devices in a JTAG chain or in a daisy-chain loop. One switch could be used for each device or a number of devices, thus allowing easy bypassing of one or more devices in a chain. This may be particularly useful in reducing the time overhead in testing devices in the JTAG chain or in daisy-chain applications where the user does not wish to change the settings of a particular device.
The bypass switch is packaged in two of the smallest footprints available for its required pin count. The 8 -lead SOT- 23 package requires only $2.9 \mathrm{~mm} \times 2.8 \mathrm{~mm}$ board space, while the MSOP package occupies approximately $3 \mathrm{~mm} \times 4.9 \mathrm{~mm}$ board area.

PRODUCT HIGHLIGHTS

1. Bidirectional level translation matches any voltage level from 1.65 V to 3.6 V .
2. The bypass switch offers high performance and is fully guaranteed across the supply range.
3. Short circuit protection.
4. Tiny 8-lead SOT-23 package and 8 -lead MSOP.

Table 1. Truth Table

$\overline{\mathbf{E N}}$	Signal Path	Function
L	$\mathrm{A} 1 \rightarrow \mathrm{Y} 2, \mathrm{Y} 1 \rightarrow \mathrm{~V}_{\mathrm{CC} 1}$	Enable bypass mode
H	$A 1 \rightarrow \mathrm{Y} 1, \mathrm{~A} 2 \rightarrow \mathrm{Y} 2$	Enable normal mode

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2003-2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features1
Applications. 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Test Waveforms 5
Absolute Maximum Ratings 6
REVISION HISTORY
7/13-Rev. A to Rev. B
Changes to Table 1 1
7/11—Rev. 0 to Rev. A
Changes to Patent Number, General Description Section, andProduct Highlights Section1
Changes to $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$, ENABLE Time$\overline{\mathrm{EN}} \rightarrow \mathrm{Y} 1$, Table 24
Changes to Table 3 6
Updated Outline Dimensions 15
Changes to Ordering Guide 16
5/03-Revision 0: Initial Version
ESD Caution 6
Pin Configuration and Function Descriptions 7
Typical Performance Characteristics 8
Theory of Operation 13
A 1 and $\overline{\mathrm{EN}}$ Input 13
Normal Operation 13
Bypass Operation 14
Outline Dimensions 15
Ordering Guide 16

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=1.65 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 2.

Parameter ${ }^{1}$	Symbol	Test Conditions/Comments	Min	Typ ${ }^{2}$	Max	Unit
LOGIC INPUTS/OUTPUTS ${ }^{3}$		$\mathrm{V}_{\text {CC2 }}=1.65 \mathrm{~V}$ to 3.6V, GND $=0 \mathrm{~V}$				
Input High Voltage ${ }^{4}$	V_{H}	$\mathrm{V}_{\text {CC1 }}=3.0 \mathrm{~V}$ to 3.6 V	1.35			V
		$\mathrm{V}_{\text {CC1 }}=2.3 \mathrm{~V}$ to 2.7 V	1.35			V
		$\mathrm{V}_{\text {cc1 }}=1.65 \mathrm{~V}$ to 1.95 V	$0.65 \times \mathrm{V}_{\text {cc }}$			V
Input Low Voltage ${ }^{4}$	VIL	$\mathrm{V}_{\text {cc1 }}=3.0 \mathrm{~V}$ to 3.6 V			0.8	V
		$\mathrm{V}_{\text {CC1 }}=2.3 \mathrm{~V}$ to 2.7 V			0.7	V
		$\mathrm{V}_{\text {CC1 }}=1.65 \mathrm{~V}$ to 1.95 V			$0.35 \times V_{\text {cc }}$	V
Output High Voltage (Y1)	Vor	$\mathrm{lor}=-100 \mu \mathrm{~A}, \mathrm{~V} \mathrm{cc1}=3.0 \mathrm{~V}$ to 3.6 V	2.4			V
		$\mathrm{lor}=-100 \mu \mathrm{~A}, \mathrm{~V} \mathrm{cc1}=2.3 \mathrm{~V}$ to 2.7 V	2.0			V
		$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC} 1}=1.65 \mathrm{~V}$ to 1.95 V	$\mathrm{V}_{\text {cc }}-0.45$			V
		$\mathrm{l}_{\mathrm{OH}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC} 1}=2.3 \mathrm{~V}$ to 2.7 V	2.0			V
		$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC} 1}=1.65 \mathrm{~V}$ to 1.95 V	$\mathrm{V}_{\text {cc }}-0.45$			V
		$\mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC} 1}=3.0 \mathrm{~V}$ to 3.6 V	2.4			V
Output Low Voltage (Y1)	VoL	$\mathrm{loL}^{\text {a }}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {CC1 }}=3.0 \mathrm{~V}$ to 3.6 V			0.40	V
		$\mathrm{loL}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC} 1}=2.3 \mathrm{~V}$ to 2.7 V			0.40	V
		$\mathrm{loL}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {cc1 }}=1.65 \mathrm{~V}$ to 1.95 V			0.45	V
		$\mathrm{loL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC} 1}=2.3 \mathrm{~V}$ to 2.7 V			0.40	V
		$\mathrm{loL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC} 1}=1.65 \mathrm{~V}$ to 1.95 V			0.45	V
		$\mathrm{loL}=8 \mathrm{~mA}, \mathrm{~V}_{\text {cC1 }}=3.0 \mathrm{~V}$ to 3.6 V			0.40	V
LOGIC OUTPUTS ${ }^{3}$		$\mathrm{V}_{\mathrm{CC} 1}=1.65 \mathrm{~V}$ to 3.6 V, GND $=0 \mathrm{~V}$				
Output High Voltage (Y2)	Vor	$\mathrm{IOH}=-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC2}}=3.0 \mathrm{~V}$ to 3.6 V	2.4			V
		$\mathrm{IOH}=-100 \mu \mathrm{~A}, \mathrm{~V}_{\text {cc2 }}=2.3 \mathrm{~V}$ to 2.7 V	2.0			V
		$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC} 2}=1.65 \mathrm{~V}$ to 1.95 V	$\mathrm{V}_{\text {cc }}-0.45$			V
		$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC} 2}=2.3 \mathrm{~V}$ to 2.7 V	2.0			V
		$\mathrm{I}_{\text {OH }}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC} 2}=1.65 \mathrm{~V}$ to 1.95 V	$\mathrm{V}_{\text {cc }}-0.45$			V
		$\mathrm{loH}=-8 \mathrm{~mA}, \mathrm{~V}_{\text {cC2 }}=3.0 \mathrm{~V}$ to 3.6 V				V
Output Low Voltage (Y2)	VoL	$\mathrm{loL}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {cC2 }}=3.0 \mathrm{~V}$ to 3.6 V			0.40	V
		$\mathrm{l}_{\text {OL }}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {CC2 }}=2.3 \mathrm{~V}$ to 2.7 V			0.40	V
		$\mathrm{loL}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {CC2 }}=1.65 \mathrm{~V}$ to 1.95 V			0.45	V
		$\mathrm{loL}=4 \mathrm{~mA}, \mathrm{~V}_{\text {cc2 }}=2.3 \mathrm{~V}$ to 2.7 V			0.40	V
		$\mathrm{loL}=4 \mathrm{~mA}, \mathrm{~V}_{\text {cc2 }}=1.65 \mathrm{~V}$ to 1.95 V			0.45	V
		$\mathrm{loL}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC2}}=3.0 \mathrm{~V}$ to 3.6 V			0.40	
SWITCHING CHARACTERISTICS ${ }^{4,5}$						
$\mathrm{V}_{¢ c}=\mathrm{V}_{¢ \subset 1}=\mathrm{V}_{¢ \subset 2}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$						
Propagation Delay, tpD						
A1 \rightarrow Y1 Normal Mode	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{cc}} / 2$		3.5	5.4	ns
A2 \rightarrow Y2 Normal Mode	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{cc}} / 2$		3.5	5.4	ns
A1 \rightarrow Y2 Bypass Mode	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{cc}} / 2$		4	6.5	ns
ENABLE Time $\overline{\mathrm{EN}} \rightarrow \mathrm{Y} 1$	$\mathrm{t}_{\text {EN }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{cc}} / 2$		4	6	ns
DISABLE Time $\overline{\mathrm{EN}} \rightarrow \mathrm{Y} 1$	tols	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{Cc}} / 2$		2.8	4	ns
ENABLE Time $\overline{\mathrm{EN}} \rightarrow \mathrm{Y} 2$	t_{EN}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{cc}} / 2$		4.5	6.5	ns
DISABLE Time $\overline{\mathrm{EN}} \rightarrow \mathrm{Y} 2$	tols	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{cc}} / 2$		4	6.5	ns

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter \({ }^{1}\) \& Symbol \& Test Conditions/Comments \& Min \& Typ \({ }^{2}\) \& Max \& Unit \\
\hline \[
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{Cc} 2}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\
\text { Propagation Delay, tpD } \\
\mathrm{A} 1 \rightarrow \mathrm{Y} 1 \text { Normal Mode } \\
\mathrm{A} 2 \rightarrow \mathrm{Y} 2 \text { Normal Mode } \\
\mathrm{A} 1 \rightarrow \mathrm{Y} 2 \text { Bypass Mode } \\
\mathrm{ENABLE} \text { Time } \overline{\mathrm{EN}} \rightarrow \mathrm{Y} 1 \\
\mathrm{DISABLE} \text { Time } \overline{\mathrm{EN}} \rightarrow \mathrm{Y} 1 \\
\mathrm{ENABLE} \text { Time } \overline{\mathrm{EN}} \rightarrow \mathrm{Y} 2 \\
\mathrm{DISABLE} \text { Time } \overline{\mathrm{EN}} \rightarrow \mathrm{Y} 2 \\
\mathrm{~V}_{\mathrm{cC}}=\mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{cc} 2}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V} \\
\text { Propagation Delay, tpD } \\
\mathrm{A} 1 \rightarrow \mathrm{Y} 1 \text { Normal Mode } \\
\mathrm{A} 2 \rightarrow \mathrm{Y} 2 \text { Normal Mode } \\
\mathrm{A} 1 \rightarrow \mathrm{Y} 2 \text { Bypass } \mathrm{Mode} \\
\mathrm{ENABLE} \text { Time } \overline{\mathrm{EN}} \rightarrow \mathrm{Y} 1 \\
\text { DISABLE Time } \overline{\mathrm{EN}} \rightarrow \mathrm{Y} 1 \\
\mathrm{ENABLE} \text { Time } \overline{\mathrm{EN}} \rightarrow \mathrm{Y} 2 \\
\text { DISABLE Time } \overline{\mathrm{EN}} \rightarrow \mathrm{Y} 2 \\
\text { Input Leakage Current } \\
\text { Output Leakage Current }
\end{gathered}
\] \& \begin{tabular}{l}
\(\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}\) \\
\(\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PL}}\) \\
\(t_{\text {PHL }}, t_{\text {PLH }}\) \\
\(t_{E N}\) \\
tDIS \\
\(t_{E N}\) \\
\(t_{\text {DIS }}\) \\
\(t_{\text {PHL }}, t_{\text {PLH }}\) \\
\(\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}\) \\
\(t_{\text {PHL }}, t_{\text {PLH }}\) \\
\(t_{E N}\) \\
\(t_{\text {DIS }}\) \\
\(t_{E N}\) \\
\(t_{\text {DIS }}\) \\
II \\
lo
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{cc}} / 2 \\
\& 0 \leq \mathrm{V}_{\mathrm{IN}} \leq 3.6 \mathrm{~V} \\
\& 0 \leq \mathrm{V}_{\mathrm{IN}} \leq 3.6
\end{aligned}
\] \& \& 4.5
4.5
4.5
5
3.2
5
4.8
6.7
6.5
6.5
7
4.4
7
6.5 \& 6.2
6.2
6.5
7.2
4.7
7.7
7.2

10
10
10.25
10.5
6.5
12
10.5
± 1

± 1 \& | ns |
| :--- |
| ns |
| $\mu \mathrm{A}$ |
| $\mu \mathrm{A}$ |

\hline | POWER REQUIREMENTS |
| :--- |
| Power Supply Voltages |
| Quiescent Power Supply Current Increase in Icc per Input | \& | $\mathrm{V}_{\mathrm{CC} 1}$ |
| :--- |
| Vcc2 |
| Icc1 |
| Icc2 |
| $\Delta \mathrm{lcc} 1$ | \& | Digital inputs $=0 \mathrm{~V}$ or V_{Cc} |
| :--- |
| Digital inputs $=0 \mathrm{~V}$ or V_{cc} |
| $\mathrm{V}_{\text {cc }}=3.6 \mathrm{~V}$, one input at 3.0 V ; others at Vcc or GND | \& \[

$$
\begin{aligned}
& 1.65 \\
& 1.65
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 3.6 \\
& 3.6 \\
& 2 \\
& 2 \\
& 0.75
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V} \\
& \mu \mathrm{~A} \\
& \mu \mathrm{~A} \\
& \mu \mathrm{~A}
\end{aligned}
$$
\]

\hline
\end{tabular}

${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.
${ }^{3} \mathrm{~V}_{\mathrm{IL}}$ and V_{H} levels are specified with respect to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{OH}}$, and V_{OL} levels for Y 1 are specified with respect to $\mathrm{V}_{\mathrm{CC} 1}$, and V_{OH}, and V_{OL} levels are specified for Y 2 with respect to
Vcc2.
${ }^{4}$ Guaranteed by design, not subject to production test.
${ }^{5}$ See the Test Waveforms section.

TEST WAVEFORMS

Figure 2. Propagation Delay

Figure 3. Y1 Enable and Disable Times

Figure 4. Y2 Enable and Disable Times

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
$V_{\text {cc }}$ to GND	-0.3 V to +4.6 V
Digital Inputs to GND	-0.3 V to +4.6 V
A1, $\overline{\mathrm{EN}}$	-0.3 V to +4.6 V
A2	-0.3 V to $\mathrm{V}_{\mathrm{cc} 1}+0.3 \mathrm{~V}$
DC Output Current	25 mA
Operating Temperature Range Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
8-Lead MSOP	
$\theta_{j A}$ Thermal Impedance	$206^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {ıc }}$ Thermal Impedance	$43^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead SOT-23	
θ_{JA} Thermal Impedance	$211^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature (<20 sec)	$235^{\circ} \mathrm{C}$
Soldering (Pb-Free)	
Reflow, Peak Temperature	$260(+0 /-5)^{\circ} \mathrm{C}$
Time at Peak Temperature	20 sec to 40 sec

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 5. 8-Lead SOT-23 Package (RJ-8)

Figure 6. 8-Lead MSOP Package (RM-8)

Table 4. Pin Function Descriptions

Pin No.		Mnemonic	Description
RJ-8	RM-8		
1	8	$\mathrm{V}_{\text {cC1 }}$	Supply Voltage 1, can be any supply voltage from 1.65 V to 3.6 V .
8	1	$\mathrm{V}_{\text {cC2 }}$	Supply Voltage 2, can be any supply voltage from 1.65 V to 3.6 V .
2	7	A1	Input Referred to $\mathrm{V}_{\mathrm{cc} 1}$.
3	6	A2	Input Referred to $\mathrm{V}_{\text {cl2 }}$.
7	2	Y1	Output Referred to $\mathrm{V}_{\text {cc1 }}$.
6	3	Y2	Output Referred to $\mathrm{V}_{\mathrm{CC} 2}$. Voltage levels appearing at Y 2 will be translated from a $\mathrm{V}_{\mathrm{CC} 1}$ voltage level to a $\mathrm{V}_{\mathrm{CC} 2}$ voltage level.
4	5	$\overline{\mathrm{EN}}$	Active Low Device Enable. When low, bypass mode is enabled; when high, the device is in normal mode.
5	4	GND	Device Ground.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. Icc1 vs. VCC1

Figure 8. ICC2 $v s . V_{C C 2}$

Figure 9. ICcI vs. Temperature

Figure 10. Icc2 vs. Temperature

Figure 11. Icc1 vs. Frequency, Normal Mode

Figure 12. Iccı vs. Frequency, Bypass Mode

Figure 13. I ICC2 vs. Frequency, Normal Mode

Figure 14. Icc2 vs. Frequency, Bypass Mode

Figure 15. Y1 Enable, Disable Time vs. Supply

Figure 16. Y2 Enable, Disable Time vs. Supply

Figure 17. Y1 Enable, Disable Time vs. Temperature

Figure 18. Y2 Enable, Disable Time vs. Temperature

Figure 19. Rise/Fall Time vs. Capacitive Load, $A 1 \rightarrow Y 1, A 2 \rightarrow Y 2$

Figure 20. Rise/Fall Time vs. Capacitive Load, A1 \rightarrow Y2, Bypass Mode

Figure 21. Rise/Fall Time vs. Capacitive Load, $A 1 \rightarrow Y 1, A 2 \rightarrow Y 2$

Figure 22. Rise/Fall Time vs. Capacitive Load, A1 \rightarrow Y2, Bypass Mode

Figure 23. Propagation Delay vs. Capacitive Load A1 \rightarrow Y1

Figure 24. Propagation Delay vs. Capacitive Load A2 \rightarrow Y2

Figure 25. Propagation Delay vs. Capacitive Load A1 \rightarrow Y2, Bypass Mode

Figure 26. Propagation Delay vs. Supply, Normal Mode

Figure 27. Propagation Delay vs. Supply, Bypass Mode

Figure 28. Propagation Delay vs. Temperature, Normal Mode

Figure 29. Propagation Delay vs. Temperature, Bypass Mode

Figure 30. Normal Mode $V_{C C 1}=3.3 \mathrm{~V}, V_{C C 2}=1.8 \mathrm{~V}$

Figure 31. Bypass Mode, $V_{C C 1}=3.3 \mathrm{~V}, V_{C C 2}=1.8 \mathrm{~V}$

Figure 32. Normal Mode, $V_{C C 1}=1.8 \mathrm{~V}, V_{C C 2}=3.3 \mathrm{~V}$

Figure 33. Bypass Mode, $V_{C C 1}=1.8 \mathrm{~V}, V_{C C 2}=3.3 \mathrm{~V}$

Figure 34. Y1 and Y2 Source and Sink Current

THEORY OF OPERATION

The ADG3233 is a bypass switch designed on a submicron process that operates from supplies as low as 1.65 V . The device is guaranteed for operation over the supply range 1.65 V to 3.6 V . It operates from two supply voltages, allowing bidirectional level translation, that is, it translates low voltages to higher voltages and vice versa. The signal path is unidirectional, meaning data may only flow from $\mathrm{A} \rightarrow \mathrm{Y}$.

A1 AND EN INPUT

The A1 and enable $(\overline{\mathrm{EN}})$ inputs have $\mathrm{V}_{\mathrm{IL}} / \mathrm{V}_{\text {IH }}$ logic levels so that the part can accept logic levels of $\mathrm{V}_{\mathrm{OL}} / \mathrm{V}_{\mathrm{OH}}$ from Device 0 or the controlling device independent of the value of the supply being used by the controlling device. These inputs ($\mathrm{A} 1, \overline{\mathrm{EN}}$) are capable of accepting inputs outside the $\mathrm{V}_{\mathrm{CC1}}$ supply range. For example, the $\mathrm{V}_{\mathrm{CC} 1}$ supply applied to the bypass switch could be 1.8 V while Device 0 could be operating from a 2.5 V or 3.3 V supply rail, there are no internal diodes to the supply rails, so the device can handle inputs above the supply but inside the absolute maximum ratings.

Figure 35. Bypass Switch in Normal Mode

BYPASS OPERATION

Figure 36 illustrates the device as used in bypass mode. The signal path is now from A1 directly to Y2, thus bypassing Device 1 completely. The signal will be level translated to a $\mathrm{V}_{\mathrm{CC} 2}$ logic level and available on Y2, where it may be applied directly to the input of Device 2. In bypass mode, Y 1 is pulled up to $\mathrm{V}_{\mathrm{CC1}}$.

The three supplies in Figure 35 and Figure 36 may be any combination of supplies, that is., $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC} 1}$, and $\mathrm{V}_{\mathrm{CC} 2}$ may be any combination of supplies, for example, $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, and 3.3 V .

Figure 36. Bypass Switch in Bypass Mode

OUTLINE DIMENSIONS

Figure 38. 8-Lead Small Outline Transistor Package [SOT-23] (RJ-8)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Branding	Package Option
ADG3233BRJ-REEL $_{\text {ADG3233BRJ-REEL7 }}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead SOT-23	W1B
ADG3233BRJZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead SOT-23	W1B	RJ-8
ADG3233BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead SOT-23	S1S	RJ-8
ADG3233BRM-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	W1B	$\mathrm{RJ-8}$
ADG3233BRM-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	W1B	RM-8
ADG3233BRMZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	WSOP	W1B
ADG3233BRMZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	S1S	RM-8

${ }^{1} Z=$ RoHS Compliant Part.

