FEATURES

1.2 GHz differential clock inputs/outputs

10-bit programmable dividers, 1 to 1024, all integers
Up to 4 differential outputs or 8 CMOS outputs
Pin strapping mode for hardwired programming at power-up
<115 fs rms broadband random jitter (see Figure 25)
Additive output jitter: 41 fs rms typical ($\mathbf{1 2} \mathbf{~ k H z}$ to $\mathbf{2 0 ~ M H z) ~}$
Excellent output-to-output isolation
Automatic synchronization of all outputs
Single 2.5 V power supply
Internal low dropout (LDO) voltage regulator for enhanced power supply immunity
Phase offset select for output-to-output coarse delay adjust
3 programmable output logic levels: LVDS, HSTL, and CMOS
Serial control port (SPI/I ${ }^{2}$ C) or pin programmable mode
Space-saving 24-lead LFCSP

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
Extended temperature range: $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Controlled manufacturing baseline
One assembly/test site
One fabrication site
Enhanced product change notification
Qualification data available on request

APPLICATIONS

Low jitter, low phase noise clock distribution
Clocking high speed ADCs, DACs, DDSs, DDCs, DUCs, MxFEs
High performance wireless transceivers
High performance instrumentation
Broadband infrastructure

GENERAL DESCRIPTION

The AD9508-EP provides clock fanout capability in a design that emphasizes low jitter to maximize system performance. The AD9508-EP benefits applications such as clocking data converters with demanding phase noise and low jitter requirements.
The AD9508-EP has four independent differential clock outputs, each with various types of logic levels available. Available logic types are LVDS (1.2 GHz), HSTL (1.2 GHz), and 1.8 V CMOS (250 MHz). In 1.8 V CMOS output mode, the differential output becomes two CMOS single-ended signals. The CMOS outputs are 1.8 V logic levels.

Each output has a programmable divider that can be bypassed or set to divide by any integer up to 1024. In addition, the AD9508-EP supports coarse output phase adjustment between the outputs.
The device can also be pin programmed for various fixed configurations at power-up without the need for SPI or $\mathrm{I}^{2} \mathrm{C}$ programming.
The AD9508-EP is available in a 24 -lead LFCSP and operates from a single 2.5 V power supply. The temperature range is $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
Additional application and technical information can be found in the AD9508 data sheet.

Figure 1.

TABLE OF CONTENTS

Features 1
Enhanced Product Features 1
Applications. 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Power Supply Current and Temperature Conditions 3
Clock Input and Output DC Specifications 3
Output Driver Timing Characteristics 5
Logic Inputs 5
Serial Port Specifications-SPI Mode 6
REVISION HISTORY
9/2018—Rev. C to Rev. D
5 Throughout
Updated Outline Dimensions 19
Changes to Ordering Guide 19
7/2017—Rev. B to Rev. C
Changed CP-24-7 to CP-24-14 Throughout
Updated Outline Dimensions 19
Changes to Ordering Guide 19
10/2014—Rev. A to Rev. BChanged Input Resistance (Differential) to Input Resistance(Single-Ended), Table 2 3
10/2013-Rev. 0 to Rev. A
Changes to Ordering Guide 19
Serial Port Specifications-I ${ }^{2} \mathrm{C}$ Mode 7
External Resistor Values for Pin Strapping Mode 7
Clock Output Additive Phase Noise 8
Clock Output Additive Time Jitter 9
Absolute Maximum Ratings 10
Thermal Characteristics 10
ESD Caution 10
Pin Configuration and Function Descriptions 11
Typical Performance Characteristics 13
Outline Dimensions 19
Ordering Guide 19

SPECIFICATIONS

Typical values are given for $\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; minimum and maximum values are given over the full supply voltage range ($\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 5 \%$) and temperature range ($\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$); input slew rate $>1 \mathrm{~V} / \mathrm{ns}$, unless otherwise noted.

POWER SUPPLY CURRENT AND TEMPERATURE CONDITIONS
Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
SUPPLY VOLTAGE	2.375	2.5	2.625	V	
CURRENT CONSUMPTION					
LVDS Configuration		132	148	mA	Input clock at 1200 MHz , differential mode; all LVDS output drivers at 1200 MHz
		96	108	mA	Input clock at 800 MHz , differential mode; all LVDS output drivers at 200 MHz
HSTL Configuration		156	175	mA	Input clock at 1200 MHz , differential mode; all HSTL output drivers at 1200 MHz
		121	136	mA	Input clock at 491.52 MHz , differential mode; all HSTL output drivers at 491.52 MHz
		86	96	mA	Input clock at 122.88 MHz , differential mode; all HSTL output drivers at 122.88 MHz
CMOS Configuration		142	159	mA	Input clock at 1200 MHz , differential mode; all CMOS output drivers at $200 \mathrm{MHz}, \mathrm{C}_{\mathrm{LOAD}}=10 \mathrm{pF}$
		118	132	mA	Input clock at 800 MHz , differential mode; all CMOS output drivers at $200 \mathrm{MHz}, \mathrm{C}_{\text {LOAD }}=10 \mathrm{pF}$
		76	85	mA	Input clock at 100 MHz , differential mode; all CMOS output drivers at $100 \mathrm{MHz}, \mathrm{C}_{\text {LOAD }}=10 \mathrm{pF}$
Full Power-Down		4.6	8	mA	
TEMPERATURE					
Ambient Temperature Range, T_{A}	-55	+25	+105	${ }^{\circ} \mathrm{C}$	
Junction Temperature, T^{\prime}				${ }^{\circ} \mathrm{C}$	Junction temperatures above $115^{\circ} \mathrm{C}$ can degrade performance, but no damage should occur unless the absolute temperature is exceeded

CLOCK INPUT AND OUTPUT DC SPECIFICATIONS

Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
CLOCK INPUTS (DIFFERENTIAL MODE)						
Input Frequency		0		1200	MHz	Differential input
Input Sensitivity		360		2200	mV p-p	As measured with a differential probe; jitter performance improves with higher slew rates (greater voltage swing)
Input Common-Mode Voltage	VIcm	0.95	1.05	1.15	V	Input pins are internally self biased, which enables ac coupling
Input Voltage Offset			30		mV	
DC-Coupled Input Common-Mode Range	$V_{\text {CMR }}$	0.58		1.67	V	Allowable common-mode voltage range when dc-coupled
Pulse Width Low		417			ps	
Pulse Width High		417			ps	
Input Resistance (Single-Ended)		5.0	7	9	$k \Omega$	
Input Capacitance	$\mathrm{Cin}^{\text {N }}$		2		pF	
Input Bias Current (Each Pin)		100		400	$\mu \mathrm{A}$	Full input swing

OUTPUT DRIVER TIMING CHARACTERISTICS

Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
LVDS OUTPUTS Output Rise/Fall Time Propagation Delay, Clock to LVDS Output Temperature Coefficient Output Skew, All LVDS Outputs ${ }^{1}$ On the Same Part Across Multiple Parts	$\begin{aligned} & \mathrm{t}_{\mathrm{R},} \mathrm{t}_{\mathrm{F}} \\ & \mathrm{t}_{\text {PD }} \end{aligned}$	1.52	$\begin{aligned} & 152 \\ & 2.01 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 192 \\ & 2.49 \\ & 48 \\ & 781 \end{aligned}$	ps ns ps $/{ }^{\circ} \mathrm{C}$ ps ps	Termination $=100 \Omega$ differential, $1 \times$ LVDS 20% to 80% measured differentially Assumes same temperature and supply; takes into account worst-case propagation delay delta due to worst-case process variation
HSTL OUTPUTS Output Rise/Fall Time Propagation Delay, Clock to HSTL Output Temperature Coefficient Output Skew, All HSTL Outputs ${ }^{1}$ On the Same Part Across Multiple Parts	$\begin{aligned} & \mathrm{t}_{\mathrm{R}_{1}} \mathrm{t}_{\mathrm{F}} \\ & \mathrm{t}_{\text {P }} \end{aligned}$	1.55	$\begin{aligned} & 118 \\ & 2.05 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 154 \\ & 2.56 \\ & \\ & 59 \\ & 825 \end{aligned}$	ps ns $\mathrm{ps} /{ }^{\circ} \mathrm{C}$ ps ps	Termination $=100 \Omega$ differential, $1 \times$ HSTL 20% to 80% measured differentially Assumes same temperature and supply; takes into account worst-case propagation delay delta due to worst-case process variation
CMOS OUTPUTS Output Rise/Fall Time Propagation Delay, Clock to CMOS Output Temperature Coefficient Output Skew, All CMOS Outputs ${ }^{1}$ On the Same Part Across Multiple Parts	$\begin{aligned} & \mathrm{t}_{\mathrm{t}_{1}, \mathrm{t}_{\mathrm{F}}} \\ & \mathrm{t}_{\text {P }} \end{aligned}$	1.98	$\begin{aligned} & 1.18 \\ & 2.56 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 1.47 \\ & 3.14 \\ & \\ & 112 \\ & 965 \end{aligned}$	ns ns $\mathrm{ps} /{ }^{\circ} \mathrm{C}$ ps ps	$\begin{aligned} & 20 \% \text { to } 80 \% ; \text { C LOAD }=10 \mathrm{pF} \\ & 10 \mathrm{pF} \text { load } \end{aligned}$ Assumes same temperature and supply; takes into account worst-case propagation delay delta due to worst-case process variation
OUTPUT LOGIC SKEW ${ }^{1}$ LVDS Outputs and HSTL Outputs LVDS Outputs and CMOS Outputs HSTL Outputs and CMOS Outputs			77 497 424	119 708 628	ps ps ps	CMOS load $=10 \mathrm{pF}$ and LVDS load $=100 \Omega$ Outputs on the same device; assumes worst-case output combination Outputs on the same device; assumes worst-case output combination Outputs on the same device; assumes worst-case output combination

${ }^{1}$ Output skew is the difference between any two similar delay paths while operating at the same voltage and temperature.

LOGIC INPUTS

Table 4.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
LOGIC INPUTS ($\overline{\text { RESET }}$, $\overline{\text { SYNC, }}$, IN_SEL)						
Input Voltage High	$\mathrm{V}_{\text {IH }}$	1.7			V	2.5 V supply voltage operation
Input Voltage Low	VIL			0.7	V	2.5 V supply voltage operation
Input Current	IInh, IInL	-300		+100	$\mu \mathrm{A}$	
Input Capacitance	$\mathrm{C}_{\text {IN }}$	2			pF	

AD9508-EP

SERIAL PORT SPECIFICATIONS—SPI MODE
Table 5.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
$\overline{\mathrm{CS}}$					$\overline{\mathrm{CS}}$ has an internal $35 \mathrm{k} \Omega$ pull-up resistor
Input Voltage					
Logic 1	VDD - 0.4				
Logic 0			0.4	V	
Input Current					
Logic 1		-4		$\mu \mathrm{A}$	
Logic 0		-85		$\mu \mathrm{A}$	
Input Capacitance		2		pF	
SCLK					SCLK has an internal $35 \mathrm{k} \Omega$ pull-down resistor
Input Voltage					
Logic 1	VDD - 0.4			V	
Logic 0			0.4	V	
Input Current					
Logic 1		70		$\mu \mathrm{A}$	
Logic 0		13		$\mu \mathrm{A}$	
Input Capacitance		2		pF	
SDIO (INPUT)					
Input Voltage					
Logic 1	VDD - 0.4			V	
Logic 0			0.4	V	
Input Current					
Logic 1		-1		$\mu \mathrm{A}$	
Logic 0		-1		$\mu \mathrm{A}$	
Input Capacitance		2		pF	
SDIO (OUTPUT)					
Output Voltage					1 mA load current
Logic 1	VDD - 0.4			V	
			0.4	V	
SDO					
Output Voltage					1 mA load current
Logic 1	VDD - 0.4			V	
Logic 0			0.4	V	
TIMING					
SCLK					
Clock Rate, 1/tclk			30	MHz	
Pulse Width High, $\mathrm{tHIGH}^{\text {rem }}$	4.6				
Pulse Width Low, tıow	3.5			ns	
SDIO to SCLK Setup, tos	2.9			ns	
SCLK to SDIO Hold, $\mathrm{t}_{\text {DH }}$	0			ns	
SCLK to Valid SDIO and SDO, tov			15	ns	
$\overline{\mathrm{CS}}$ to SCLK Setup (t)	3.4			ns	
$\overline{\mathrm{CS}}$ to SCLK Hold (tc)	0			ns	
$\overline{\mathrm{CS}}$ Minimum Pulse Width High	3.4			ns	

SERIAL PORT SPECIFICATIONS—1²C MODE

Table 6.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
SDA, SCL (INPUTS)					SDA and SCL have internal $80 \mathrm{k} \Omega$ pull-up resistors
Input Voltage					
Logic 1	VDD - 0.4			V	
Logic 0			0.4	V	
Input Current	-40		0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=10 \%$ to 90%
Hysteresis of Schmitt Trigger Inputs	150			mV	
SDA (OUTPUT)					
Output Logic 0 Voltage			0.4	V	$\mathrm{l}_{0}=3 \mathrm{~mA}$
Output Fall Time from $\mathrm{V}_{\mathrm{IH}_{\text {(MIN }}}$ to $\mathrm{V}_{\text {IL(MAX) }}$			250	ns	$10 \mathrm{pF} \leq \mathrm{Cb}_{\mathrm{b}} \leq 400 \mathrm{pF}$
TIMING					
SCL Clock Rate			400	kHz	
Bus-Free Time Between a Stop and Start Condition, tbuf	1.3			$\mu \mathrm{s}$	
Repeated Start Condition Setup Time, tsu; sTA			0.6	$\mu \mathrm{s}$	
Repeated Start Condition Hold Time, thd; sta	0.6			$\mu \mathrm{s}$	After this period, the first clock pulse is generated
Stop Condition Setup Time, tsu; sto	0.6			$\mu \mathrm{s}$	
Low Period of the SCL Clock, tıow	1.3			$\mu \mathrm{s}$	
High Period of the SCL Clock, thigh	0.6			$\mu \mathrm{s}$	
Data Setup Time, tsu; Dat	100			ns	
Data Hold Time, thd; DAT	0		0.9	$\mu \mathrm{s}$	

EXTERNAL RESISTOR VALUES FOR PIN STRAPPING MODE

Table 7.

Parameter	Resistor Polarity	Min	Typ \quad Max	Unit	Test Conditions/Comments
EXTERNAL RESISTORS					Using 10\% tolerance resistor
Voltage Level 0	Pull down to ground		820		Ω
Voltage Level 1	Pull down to ground		1.8		$\mathrm{k} \Omega$
Voltage Level 2	Pull down to ground		3.9	$\mathrm{k} \Omega$	
Voltage Level 3	Pull down to ground		8.2	$\mathrm{k} \Omega$	
Voltage Level 4	Pull up to VDD	820	Ω		
Voltage Level 5	Pull up to VDD		1.8	$\mathrm{k} \Omega$	
Voltage Level 6	Pull up to VDD	3.9	$\mathrm{k} \Omega$		
Voltage Level 7	Pull up to VDD	8.2	$\mathrm{k} \Omega$		

CLOCK OUTPUT ADDITIVE PHASE NOISE

Table 8.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
```ADDITIVE PHASE NOISE, CLOCK TO HSTL OR LVDS CLK \(=1200 \mathrm{MHz}\), OUTx \(=1200 \mathrm{MHz}\) Divide Ratio = 1 10 Hz Offset 100 Hz Offset 1 kHz Offset 10 kHz Offset 100 kHz Offset 1 MHz Offset 10 MHz Offset 100 MHz Offset```		$\begin{aligned} & -90 \\ & -101 \\ & -110 \\ & -117 \\ & -135 \\ & -144 \\ & -149 \\ & -150 \end{aligned}$		$\mathrm{dBc} / \mathrm{Hz}$   $\mathrm{dBc} / \mathrm{Hz}$	Input slew rate > $1 \mathrm{~V} / \mathrm{ns}$
```ADDITIVE PHASE NOISE, CLOCK TO HSTL, LVDS, OR CMOS CLK = 625 MHz, OUTx = 125 MHz Divide Ratio = 5 10 Hz Offset 100 Hz Offset 1 kHz Offset 10 kHz Offset 100 kHz Offset 1 MHz Offset 10 MHz Offset 20 MHz Offset```		$\begin{aligned} & -114 \\ & -125 \\ & -133 \\ & -141 \\ & -159 \\ & -162 \\ & -163 \\ & -163 \end{aligned}$		$\mathrm{dBc} / \mathrm{Hz}$   $\mathrm{dBc} / \mathrm{Hz}$	Input slew rate > $1 \mathrm{~V} / \mathrm{ns}$
```ADDITIVE PHASE NOISE, CLOCK TO HSTL OR LVDS CLK \(=491.52 \mathrm{MHz}\), OUTx \(=491.52 \mathrm{MHz}\) Divide Ratio = 1 10 Hz Offset 100 Hz Offset 1 kHz Offset 10 kHz Offset 100 kHz Offset 1 MHz Offset 10 MHz Offset 20 MHz Offset```		$\begin{aligned} & -100 \\ & -111 \\ & -120 \\ & -127 \\ & -146 \\ & -153 \\ & -153 \\ & -153 \end{aligned}$		$\mathrm{dBc} / \mathrm{Hz}$   $\mathrm{dBc} / \mathrm{Hz}$	Input slew rate > $1 \mathrm{~V} / \mathrm{ns}$

## Enhanced Product <br> AD9508-EP

## CLOCK OUTPUT ADDITIVE TIME JITTER

Table 9.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
LVDS OUTPUT ADDITIVE TIME JITTER					
CLK $=622.08 \mathrm{MHz}$, Outputs $=622.08 \mathrm{MHz}$		41		fs rms	$\mathrm{BW}=12 \mathrm{kHz}$ to 20 MHz
		70		fs rms	$\mathrm{BW}=20 \mathrm{kHz}$ to 80 MHz
		69		fs rms	$\mathrm{BW}=50 \mathrm{kHz}$ to 80 MHz
CLK $=622.08 \mathrm{MHz}$, Outputs $=155.52 \mathrm{MHz}$		93		fs rms	$\mathrm{BW}=12 \mathrm{kHz}$ to 20 MHz
		144		fs rms	$\mathrm{BW}=20 \mathrm{kHz}$ to 80 MHz
		142		fs rms	$\mathrm{BW}=50 \mathrm{kHz}$ to 80 MHz
CLK $=125 \mathrm{MHz}$, Outputs $=125 \mathrm{MHz}$		105		fs rms	$\mathrm{BW}=12 \mathrm{kHz}$ to 20 MHz
		209		fs rms	$\mathrm{BW}=20 \mathrm{kHz}$ to 80 MHz
		206		fs rms	$\mathrm{BW}=50 \mathrm{kHz}$ to 80 MHz
CLK $=400 \mathrm{MHz}$, Outputs $=50 \mathrm{MHz}$		184		fs rms	$\mathrm{BW}=12 \mathrm{kHz}$ to 20 MHz
HSTL OUTPUT ADDITIVE TIME JITTER					
CLK $=622.08 \mathrm{MHz}$, Outputs $=622.08 \mathrm{MHz}$		41		fs rms	$\mathrm{BW}=12 \mathrm{kHz}$ to 20 MHz
		56		fs rms	$\mathrm{BW}=100 \mathrm{~Hz}$ to 20 MHz
		72		fs rms	$\mathrm{BW}=20 \mathrm{kHz}$ to 80 MHz
		70		fs rms	$\mathrm{BW}=50 \mathrm{kHz}$ to 80 MHz
CLK $=622.08 \mathrm{MHz}$, Outputs $=155.52 \mathrm{MHz}$		76		fs rms	$\mathrm{BW}=12 \mathrm{kHz}$ to 20 MHz
		87		fs rms	$\mathrm{BW}=100 \mathrm{~Hz}$ to 20 MHz
		158		fs rms	$\mathrm{BW}=20 \mathrm{kHz}$ to 80 MHz
		156		fs rms	$\mathrm{BW}=50 \mathrm{kHz}$ to 80 MHz
CMOS OUTPUT ADDITIVE TIME JITTER $\text { CLK }=100 \mathrm{MHz} \text {, Outputs }=100 \mathrm{MHz}$		91		fs rms	$\mathrm{BW}=12 \mathrm{kHz}$ to 20 MHz

ABSOLUTE MAXIMUM RATINGS
Table 10.

Parameter	Rating
Supply Voltage (VDD)	3.6 V
Maximum Digital Input Voltage	-0.5 V to VDD +0.5 V
CLK and $\overline{\mathrm{CLK}}$	-0.5 V to VDD +0.5 V
Maximum Digital Output Voltage	-0.5 V to VDD +0.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.
The following equation determines the junction temperature on the application PCB:

$$
T_{J}=T_{C A S E}+\left(\Psi_{J T} \times P_{D}\right)
$$

where:
$T_{I}$ is the junction temperature $\left({ }^{\circ} \mathrm{C}\right)$.
$T_{\text {CASE }}$ is the case temperature $\left({ }^{\circ} \mathrm{C}\right)$ measured by the customer at the top center of the package.
$\Psi_{J T}$ is the value indicated in Table 11.
$P_{D}$ is the power dissipation.
Values of $\theta_{J A}$ are provided for package comparison and PCB design considerations. $\theta_{\mathrm{JA}}$ can be used for a first-order approximation of $\mathrm{T}_{\mathrm{J}}$ by the following equation:

$$
T_{J}=T_{A}+\left(\theta_{J A} \times P_{D}\right)
$$

where $T_{A}$ is the ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$.
Values of $\theta_{\mathrm{JC}}$ are provided for package comparison and PCB design considerations when an external heat sink is required.

Values of $\theta_{\text {IB }}$ are provided for package comparison and PCB design considerations.

## THERMAL CHARACTERISTICS

Thermal characteristics are established using JEDEC JESD51-7 and JEDEC JESD51-5 2S2P test boards.

Table 11. Thermal Characteristics, 24-Lead LFCSP

Symbol	Thermal Characteristic ${ }^{1}$	Value ${ }^{2}$	Unit
$\theta_{\text {JA }}$	Junction-to-ambient thermal resistance per JEDEC JESD51-2 (still air)	43.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JMA }}$	Junction-to-ambient thermal resistance, $1.0 \mathrm{~m} / \mathrm{sec}$ airflow per JEDEC JESD51-6 (moving air)	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JMA }}$	Junction-to-ambient thermal resistance, $2.5 \mathrm{~m} / \mathrm{sec}$ airflow per JEDEC JESD51-6 (moving air)	38.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {лв }}$	Junction-to-board thermal resistance per JEDEC JESD51-8 (still air)	16.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {лс }}$	Junction-to-case thermal resistance (die-to-heat sink) per MIL-STD-883, Method 1012.1	7.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JT }}$	Junction-to-top-of-package characterization parameter per JEDEC JESD51-2 (still air)	0.33	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ The exposed pad on the bottom of the package must be soldered to ground (VSS) to achieve the specified thermal performance.
${ }^{2}$ Results are from simulations. The PCB is a JEDEC multilayer type. Thermal performance for actual applications requires careful inspection of the conditions in the application to determine whether they are similar to those assumed in these calculations.

## ESD CAUTION



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 2. Pin Configuration

Table 12. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\overline{\mathrm{CS}} / \mathrm{S} 2$	Chip Select ( $\overline{\mathrm{CS}}$ )/Pin Programming (S2). This dual-purpose pin is controlled by the PROG_SEL pin. In SPI mode, $\overline{\mathrm{CS}}$ is an active low CMOS input. When programming the device in SPI mode, $\overline{\mathrm{CS}}$ must be held low. In systems with two or more AD9508-EP devices, $\overline{C S}$ enables individual programming of each device. In pin programming mode, S 2 is hardwired with a resistor to either VDD or ground. The resistor value and resistor biasing determine the channel divider value for the outputs on Pin 11 and Pin 12.
2	OUTO	LVDS/HSTL Differential Output or Single-Ended CMOS Output.
3	$\overline{\text { OUT0 }}$	Complementary LVDS/HSTL Differential Output or Single-Ended CMOS Output.
4	SDO/S3	SPI Serial Data Output (SDO)/Pin Programming (S3). This dual-purpose pin is controlled by the PROG_SEL pin. In SPI mode, SDO can be configured as an output to read back the internal register settings. In pin programming mode, S 3 is hardwired with a resistor to either VDD or ground. The resistor value and resistor biasing determine the channel divider value for the outputs on Pin 16 and Pin 17.
5	EXT_CAPO	Node for External Decoupling Capacitor for LDO Regulator. Tie this pin with a $0.47 \mu \mathrm{~F}$ capacitor to ground.
6	VDD	Power Supply (2.5 V Operation).
7	OUT1	LVDS/HSTL Differential Output or Single-Ended CMOS Output.
8	$\overline{\text { OUT1 }}$	Complementary LVDS/HSTL Differential Output or Single-Ended CMOS Output.
9	S4	The S4 pin is used in pin programming mode only. (The PROG_SEL pin determines which programming mode is used.) $S 4$ is hardwired with a resistor to either VDD or ground. The resistor value and resistor biasing determine the output logic levels used for the outputs on Pin 2, Pin 3, Pin 7, and Pin 8.
10	S5	The $S 5$ pin is used in pin programming mode only. (The PROG_SEL pin determines which programming mode is used.) S5 is hardwired with a resistor to either VDD or ground. The resistor value and resistor biasing determine the output logic levels used for the outputs on Pin 11, Pin 12, Pin 16, and Pin 17.
11	OUT2	LVDS/HSTL Differential Output or Single-Ended CMOS Output.
12	$\overline{\text { OUT2 }}$	Complementary LVDS/HSTL Differential Output or Single-Ended CMOS Output.
13	VDD	Power Supply (2.5 V Operation).
14	EXT_CAP1	Node for External Decoupling Capacitor for LDO Regulator. Tie this pin with a $0.47 \mu \mathrm{~F}$ capacitor to ground.
15	PROG_SEL	Three-State CMOS Input. Pin 15 selects the device programming interface used by the AD9508-EP: SPI, $I^{2} \mathrm{C}$, or pin programming.
16	OUT3	LVDS/HSTL Differential Output or Single-Ended CMOS Output.
17	OUT3	Complementary LVDS/HSTL Differential Output or Single-Ended CMOS Output.
18	$\overline{\text { RESET }}$	Device Reset (CMOS Input, Active Low). When this pin is asserted, the internal register settings revert to their default state after the RESET pin is released. $\overline{\text { RESET }}$ also powers down the device when an active low signal is applied to the pin. The $\overline{\operatorname{RESET}} \mathrm{pin}$ has an internal $24 \mathrm{k} \Omega$ pull-up resistor.


Pin No.	Mnemonic	Description
19	SCLK/SCL/S0	SPI Serial Clock (SCLK)/I $I^{2}$ C Serial Clock (SCL)/Pin Programming (S0). This multipurpose pin is controlled by the PROG_SEL pin. In SPI mode, SCLK is the serial clock. In ${ }^{12}$ C mode, SCL is the serial clock. In pin programming mode, SO is hardwired with a resistor to either VDD or ground. The resistor value and resistor biasing determine the channel divider value for the outputs on Pin 2 and Pin 3.
20	$\overline{\text { SYNC }}$	Clock Synchronization (Active Low). When this pin is asserted, the output drivers are held static and then synchronized on a low-to-high transition of this pin. The $\overline{S Y N C}$ pin has an internal $24 \mathrm{k} \Omega$ pull-up resistor.
21	CLK	Differential Clock Input or Single-Ended CMOS Input. This pin serves as a differential clock input or as a singleended CMOS input, depending on the logic state of the IN_SEL pin.
22	$\overline{\text { CLK }}$	Complementary Differential Clock Input.
23	IN_SEL	Input Select (CMOS Input). A logic high on this pin configures the CLK and $\overline{C L K}$ inputs for a differential input signal. A logic low configures the CLK input for single-ended CMOS; ac-couple the unused $\overline{\text { CLK }}$ pin to ground with a $0.1 \mu \mathrm{~F}$ capacitor.
24	SDIO/SDA/S1	SPI Serial Data Input and Output (SDIO)// $/{ }^{2} \mathrm{C}$ Serial Data (SDA)/Pin Programming (S1). This multipurpose pin is controlled by the PROG_SEL pin. In SPI mode, SDIO is the serial input/output pin. In 4-wire SPI mode, data writes occur on this pin; in 3-wire SPI mode, both data reads and writes occur on this pin. This pin has no internal pull-up/pull-down resistor. In $I^{2} \mathrm{C}$ mode, SDA is the serial data pin. In pin programming mode, S 1 is hardwired with a resistor to either VDD or ground. The resistor value and resistor biasing determine the channel divider values for the outputs on Pin 7 and Pin 8.
	EP	Exposed Pad. The exposed die pad must be connected to ground (VSS).

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 3. LVDS Differential Output Waveform at 800 MHz


Figure 4. LVDS Differential Output Waveform at 156.25 MHz


Figure 5. Power Supply Current vs. Frequency and Number of Outputs Used, LVDS Mode


Figure 6. LVDS Differential Output Swing vs. Frequency


Figure 7. LVDS Differential Output Swing vs. Power Supply Voltage


Figure 8. LVDS Propagation Delay vs. Input Differential Voltage


Figure 9. LVDS Propagation Delay vs. Input Common-Mode Voltage


Figure 10. LVDS Output Duty Cycle vs. Output Frequency


Figure 11. CMOS Output Waveform at 200 MHz with 10 pF Load


Figure 12. CMOS Output Waveform at 50 MHz with 10 pF Load


Figure 13. Power Supply Current vs. Frequency and Number of Outputs Used, CMOS Mode


Figure 14. CMOS Output Swing vs. Frequency and Resistive Load


Figure 15. CMOS Output Swing vs. Frequency and Temperature (10 pF Load)


Figure 16. CMOS Output Swing vs. Frequency and Capacitive Load


Figure 17. HSTL Differential Output Waveform at 800 MHz


Figure 18. HSTL Differential Output Waveform at 156.25 MHz


Figure 19. Power Supply Current vs. Frequency and Number of Outputs Used, HSTL Mode


Figure 20. HSTL Differential Output Swing vs. Frequency


Figure 21. HSTL Differential Output Swing vs. Power Supply Voltage


Figure 22. HSTL Propagation Delay vs. Input Differential Voltage


Figure 23. HSTL Propagation Delay vs. Input Common-Mode Voltage


Figure 24. HSTL Output Duty Cycle vs. Output Frequency


Figure 25. Additive Broadband Jitter vs. Input Slew Rate, LVDS and HSTL Modes (Calculated from SNR of ADC Method)


Figure 26. Absolute Phase Noise in HSTL Mode with Clock Input at 622.08 MHz and Outputs $=622.08 \mathrm{MHz}, 311.04 \mathrm{MHz}$, and 155.52 MHz


Figure 27. Absolute Phase Noise in LVDS Mode with Clock Input at 622.08 MHz and Outputs $=622.08 \mathrm{MHz}, 311.04 \mathrm{MHz}$, and 155.52 MHz


Figure 28. Absolute Phase Noise of Clock Source at 622.08 MHz


Figure 29. Additive Phase Noise with Clock Input $=1200$ MHz and HSTL Outputs $=1200 \mathrm{MHz}$


Figure 30. Additive Phase Noise with Clock Input $=1200 \mathrm{MHz}$ and HSTL Outputs $=100 \mathrm{MHz}$


Figure 31. Additive Phase Noise with Clock Input $=622.08 \mathrm{MHz}$ and HSTL Outputs $=155.52 \mathrm{MHz}$


Figure 32. Additive Phase Noise with Clock Input $=622.08 \mathrm{MHz}$ and LVDS Outputs $=622.08 \mathrm{MHz}$


Figure 33. Additive Phase Noise with Clock Input $=100 \mathrm{MHz}$ and CMOS Outputs $=100 \mathrm{MHz}$

## OUTLINE DIMENSIONS



COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-8
Figure 34. 24-Lead Lead Frame Chip Scale Package [LFCSP] $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-24-15)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
AD9508SCPZ-EP	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	24-Lead Lead Frame Chip Scale Package [LFCSP]	CP-24-15
AD9508SCPZ-EP-R7	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	24-Lead Lead Frame Chip Scale Package [LFCSP]	CP-24-15
AD9508/PCBZ		Evaluation Board	

${ }^{1} Z=$ RoHS Compliant Part.

