DESCRIPTION

Demonstration circuit 1900A features the LTM ${ }^{\circledR} 4644 \mathrm{EY}$ μ Module ${ }^{\circledR}$ regulator, a high-performance high-efficiency quad output step-down regulator. The LTM4644EY has an operating input voltage range of 4 V to 14 V and is able to provide up to 4A of output current from each of its phases. Each output's voltage is programmable from 0.6 V to 5.5 V . The LTM4644EY is a DC/DC point of load regulator in a $9 \mathrm{~mm} \times 15 \mathrm{~mm} \times 5.01 \mathrm{~mm}$ BGA package requiring only a
few input and output capacitors. Output voltage tracking is available through the TRACK/SS pin for supply rail sequencing. External clock synchronization is also available through the CLKIN pin. The LTM4644 data sheet must be read in conjunction with this demo manual prior to working on or modifying demo circuit 1900A.

Design files for this circuit board are available at http://www.linear.com/demo/DC1900A

[^0] Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY
Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	VALUE
Input Voltage Range		4 V to 14 V
Output Voltage $\mathrm{V}_{\text {OUT }}$	Jumper Selectable	$\mathrm{V}_{\text {OUT1 }}=3.3 \mathrm{VDC}, \mathrm{V}_{\text {OUT2 }}=2.5 \mathrm{VDC}$, $\mathrm{V}_{\text {OUT3 }}=1.5 \mathrm{VDC}, \mathrm{V}_{\text {OUT4 }}=1.2 \mathrm{VDC}$
Maximum Continuous Load Current per Output	De-rating is necessary for certain operating conditions. See data sheet for details	4 ADC
Default Operating Frequency		1 MHz
Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT1 }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=4 \mathrm{~A}$	89% See Figure 2

BOARD PHOTO

DEMO MANUAL DC1900A

PUICK START PROCEDURE

Demonstration circuit 1900A is an easy way to evaluate the performance of the LTM4644EY. Please refer to Figure 1 for test setup connections and follow the procedure below.

1. With power off, place the jumpers in the following positions:

JP1	JP2	JP3	JP4
RUN1	RUN2	RUN3	RUN4
ON	ON	ON	ON

JP8	JP7	JP6	JP5
MODE1	MODE2	MODE3	MODE4
CCM	CCM	CCM	CCM

2. Before connecting input supply, loads and meters, preset the input voltage supply to be between 4.5 V to 14 V . Preset the load currents to 0 A .
3. With power off, connect the loads, input voltage supply and meters as shown in Figure 1.
4. Turn on input power supply. The output voltage meters for each phase should display the programmed output voltage within $\pm 2 \%$.
5. Once the proper output voltage is established, adjust the load currents for each phase within the 0A to 4A range and observe the load regulation, efficiency, and other parameters.
6. To observe increased light load efficiency place a Mode pin jumper (JP5-JP8) in the DCM Mode position.

Note: Optional jumper positions are available on the DC1900A to allow for easy setup to evaluate parallel operation of the LTM4644. For example, to parallel all 4 outputs of the LTM4644 together stuff 0Ω jumpers for R32-R46.

Figure 1. Test Setup of DC1900A

DEMO MANUAL DC1900A

PUICK START PROCEDURE

DC1900A F01a
DC1900A F01b
Figure 2. Measured Supply Efficiency at $5 \mathrm{~V}_{\mathrm{IN}}$ and $12 \mathrm{~V}_{\mathrm{IN}}$

Figure 3. Measured $\mathrm{V}_{\text {OUT1 }}=3.3 \mathrm{~V}$ and $\mathrm{V}_{\text {OUT4 }}=1.2 \mathrm{~V}$ Load Transient Responses (2A to 4A Load Step)

Figure 4. Measured Thermal Capture with All Phases at Full Load (4A)

DEMO MANUAL DC1900A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	2	C1, C3	CAP, 1206, CER. $22 \mu \mathrm{~F} 25 \mathrm{~V}$ X5R 20\%	MURATA, GRM31CR61E226KE15L
2	1	C6	CAP, 0603, X5R, 1uF, 16V 10\%	AVX, 0603YD105KAT2A
3	4	C9, C17, C28, C36	CAP, 1210 CER. $47 \mu \mathrm{~F} 6.3 \mathrm{~V}$	AVX, 12106D476MAT2A
4	4	C10, C16, C29, C35	CAP, 1206, X5R, 47uF, 6.3V, 20\%	TAIYO YUDEN, JMK316BJ476ML
5	1	R3	RES, 0603, 13.3k 1\% 1/10W	VISHAY CRCW060313K3FKEA
6	1	R4	RES, 0603, 40.2k $1 \% 1 / 10 \mathrm{~W}$	VISHAY CRCW060340K2FKEA
7	2	R11	RES, 0603, 19.1k k 1\% 1/10W	VISHAY CRCW060319K1FKEA
8	1	R12	RES, 0603, 60.4k $1 \% 1 / 10 \mathrm{~W}$	VISHAY CRCW060360K4FKEA
9	1	U1	LTM4644EY, BGA-15X9-5.01	LINEAR TECH.CORP. LTM4644EY

Additional Demo Board Circuit Components

1	2	C4, C5	CAP, 1206, CER. $22 \mu \mathrm{~F} 25 \mathrm{~V}$ X5R 20\%	MURATA, GRM31CR61E226KE15L
2	1	C2	CAP, 7343, POSCAP 68uF 16V	SANY0, 16TQC68MYF
3	6	C7, C21, C22, C31, C41, C42	CAP, 0603, OPTION	OPTION
4	4	C8, C18, C27, C37	CAP, 7343, POSCAP, OPTION	OPTION
5	8	C11, C12, C14, C15, C30, C38, C33, C34	CAP, 1206, CER., OPTION	OPTION
6	2	C13, C32	CAP, 0603, CER., 100PF	AVX 06033C101KAT2A
7	4	R7, R8, R15, R16	RES, 0603, $0 \Omega 1 \% 1 / 10 \mathrm{~W}$	VISHAY, CRCW06030000Z0ED
8	1	R28	RES, 0805, $0 \Omega 5 \% 1 / 16 \mathrm{~W}$	VISHAY, CRCW08050000Z0EA
9	4	R19, R20, R21, R22	RES, 0603, 150k 2 \% 1/10W	VISHAY CRCW0603150KJNEA
10	4	R23, R24, R25, R26	RES, 0603, 100k Ω \% 1/10W	VISHAY CRCW0603100KJNEA
11	4	R9, R10, R17, R18	RES, 0603, OPTION	OPTION
12	12	R32-R35, R37-R40, R42-R45 (OPT)	RES, 0603, OPTION	OPTION
13	3	R36, R41, R46 (OPT)	RES, 2512, 0Ω, OPTION	OPTION
14	4	C25, C26, C45, C46	CAP, 0603, CER. 10 F F 50V X7R	TDK, C1608X7R1H104M
15	1	R1	RES., 0603, CHIP, 10k, 1\%	VISHAY, CRCW060310KOFKED
16	1	R2	RES, 0603, $1 \Omega 5 \% 1 / 10 \mathrm{~W}$	VISHAY,CRCW06031R00JNEA
17	4	R27, R29, R30, R31	RES, 0603, 100k Ω \% 1/10W	VISHAY CRCW0603100KJNEA
Hardware				
1	16	E1, E3-E17	TESTPOINT, TURRET 0.094"	MILLMAX 2501-2-00-80-00-00-07-0
2	2	J1, J2	JACK, BANANA	KEYSTONE 575-4
3	8	JP1-JP8	JMP, 0.079 SINGLE ROW HEADER, 3 PIN	SULLINS, NRPN031PAEN-RC
4	8	XJP1-XJP8	SHUNT, .079" CENTER	SAMTEC, 2SN-BK-G
5	4	STAND-OFFS	STAND-OFF, SNAP ON, NYLON 0.375" TALL	KEYSTONE, 8832(SNAP ON)

SCHEMATIC DIAGRAM

DEMO MANUAL DC1900A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPÓSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

[^0]: $\boldsymbol{\mathcal { T }}$, LT, LTC, LTM, Linear Technology, the Linear logo and μ Module are registered trademarks of

