FEATURES

USB 1.1 signal switching compliant
-3 dB bandwidth, 150 MHz
Tiny 10-lead LFCSP and MSOP packages, 10-ball WLCSP package
Single-supply 1.8 V to 5.5 V operation
Low on resistance
2.5Ω typical
3.45Ω maximum at $85^{\circ} \mathrm{C}$
Typical power consumption: <0.1 $\mu \mathrm{W}$

APPLICATIONS

USB 1.1 signal switching circuits
Cellular phones
PDAs
MP3 players
Battery-powered systems
Headphone switching
Audio and video signal routing
Communications systems

GENERAL DESCRIPTION

The ADG787 is a low voltage, CMOS device that contains two independently selectable single-pole, double-throw (SPDT) switches. It is designed as a general analog-to-digital switch and can also be used for routing USB 1.1 signals.

This device offers low on resistance of typically 2.5Ω, making the part an attractive solution for applications that require low distortion through the switch.

The ADG787 comes in a 10 -ball WLCSP, a tiny 10-lead LFCSP, and a tiny 10-lead MSOP. These packages make the ADG787 the ideal solution for space-constrained applications.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The ADG787 exhibits break-before-make switching action.

FUNCTIONAL BLOCK DIAGRAM
 Figure 1.

Figure 2. Eye Pattern; $12 \mathrm{Mbps}, V_{D D}=4.2 \mathrm{~V}$, PRBS 31

Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADG787

TABLE OF CONTENTS

\qquadApplications... 1
Functional Block Diagram 1
General Description 1
Specifications 3
Absolute Maximum Ratings 5
ESD Caution 5
REVISION HISTORY
5/06-Rev. 0 to Rev. A
Updated Formatting Universal
Changes to Table 1 3
Changes to Table 3 5
Changes to Ordering Guide 15
1/05—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	B Version ${ }^{1}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match Between Channels (Δ Ron) On Resistance Flatness (Rflat (on))	$\begin{aligned} & 2.5 \\ & 3 \\ & 0.02 \\ & \\ & 0.65 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0 \text { to } V_{\mathrm{DD}} \\ & 3.45 \\ & 0.1 \\ & 0.95 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$ See Figure 28 $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (OFF) Channel On Leakage, lo, Is (ON)	$\begin{aligned} & \pm 0.05 \\ & \pm 0.05 \end{aligned}$		nA typ nA typ	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 29 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \text {; see Figure } 30 \\ & \hline \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current linl or linh $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS² ton toff Propagation Delay Skew, tskew Break-Before-Make Time Delay (tввм) Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion (THD + N) Insertion Loss -3 dB Bandwidth C_{s} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{ON})$	$\begin{aligned} & 13 \\ & 19 \\ & 3 \\ & 5 \\ & 0.06 \\ & 10 \\ & \\ & 14 \\ & 14 \\ & -63 \\ & -110 \\ & \\ & -63 \\ & \\ & 0.03 \\ & -0.2 \\ & 145 \\ & 16 \\ & 40 \\ & \hline \end{aligned}$	22 6 0.15 5	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ dB typ \% dB typ MHz typ pF typ pF typ	
POWER REQUIREMENTS IDD	0.005	1	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V} \mathrm{VD}=5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

[^0]
ADG787

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	B Version ${ }^{1}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match Between Channels (Δ Ros) On Resistance Flatness (Rflat (ON)	$\begin{aligned} & 4 \\ & 5.75 \\ & 0.07 \\ & 0.3 \\ & 1.6 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 6 \\ & 0.35 \\ & 2.6 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} ; \text { see Figure } 28 \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (OFF) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.01 \end{aligned}$		nA typ nA typ	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0.6 \mathrm{~V} / 3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3.3 \mathrm{~V} / 0.6 \mathrm{~V} \text {; see Figure } 29 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0.6 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \text {; see Figure } 30 \\ & \hline \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VinL Input Current linz or linh $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.3 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS² ton toff Propagation Delay Skew, tskew Break-Before-Make Time Delay (tввм) Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion (THD + N) Insertion Loss -3 dB Bandwidth C_{s} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 18 \\ & 30 \\ & 4 \\ & 6 \\ & 0.04 \\ & \\ & 15 \\ & \\ & 10 \\ & -63 \\ & -110 \\ & \\ & -63 \\ & \\ & 0.07 \\ & -0.24 \\ & 145 \\ & 16 \\ & 40 \\ & \hline \end{aligned}$	35 7 0.12 5	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ dB typ \% dB typ MHz typ pF typ pF typ	
POWER REQUIREMENTS ID	0.005	1	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V} \mathrm{DD}=3.6 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V} \end{aligned}$

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Rating
$V_{\text {DD }}$ to GND	-0.3 V to +6 V
Analog Inputs ${ }^{1}$, Digital Inputs	$\begin{aligned} & -0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or } \\ & 30 \mathrm{~mA} \text { (whichever } \\ & \text { occurs first) } \end{aligned}$
Peak Current, S or D 5 V Operation 3.3 V Operation	300 mA 200 mA (pulsed at 1 ms , 10\% duty cycle max)
Continuous Current, S or D 5 V Operation 3.3 V Operation	100 mA 80 mA
Operating Temperature Range Extended Industrial (B Version)	
MSOP and LFCSP packages Industrial (B version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
WLCSP package	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
WLCSP Package (4-Layer Board) θ_{JA} Thermal Impedance	$120^{\circ} \mathrm{C} / \mathrm{W}$
LFCSP Package (4-Layer Board) θ_{JA} Thermal Impedance	$61^{\circ} \mathrm{C} / \mathrm{W}$
MSOP Package (4-Layer Board)	
θ_{JA} Thermal Impedance	$142^{\circ} \mathrm{C} / \mathrm{W}$
θ_{Jc} Thermal Impedance	$43.7^{\circ} \mathrm{C} / \mathrm{W}$
Lead-Free Temperature Soldering IR Reflow, Peak Temperature	
Peak Temperature	260(+0/-5) ${ }^{\circ} \mathrm{C}$
Time at Peak Temperature	10 sec to 40 sec

${ }^{1}$ Overvoltages at the IN, S, or D pins are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADG787

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. 10-Lead LFCSP and 10-lead MSOP Pin Configuration

TOP VIEW (BALLS AT THE BOTTOM)
Figure 4. 10-Ball WLCSP Pin Configuration

Table 4. 10-Lead LFCSP/MSOP Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VDD	Most Positive Power Supply Potential. Source Terminal. May be an input or output.
3	S1A	Drain Terminal. May be an input or output.
4	IN1	Logic Control Input. Source Terminal. May be an input or output.
5	S1B	Ground (OV) Reference. Source Terminal. May be an input or output.
8	IN2	Logic Control Input. Drain Terminal. May be an input or output.
10	S2A	Source Terminal. May be an input or output.

Table 5. 10-Lead WLCSP Pin Function Descriptions
\(\left.$$
\begin{array}{l|l|l}\hline \begin{array}{l}\text { Ball } \\
\text { Location }\end{array} & \text { Mnemonic } & \text { Description } \\
\hline \text { 1a } & \text { S1B } & \begin{array}{l}\text { Source Terminal. May be an input or } \\
\text { output. }\end{array} \\
\text { 1b } & \text { GND } & \begin{array}{l}\text { Ground (0 V) Reference. } \\
\text { Source Terminal. May be an input or } \\
\text { output. } \\
\text { Source Terminal. May be an input or } \\
\text { output. }\end{array} \\
\text { 2c } & \text { IN1 } & \begin{array}{l}\text { Logic Control Input. } \\
\text { Da }\end{array}
$$

Drain Terminal. May be an input or

output.

Drain Terminal. May be an input or

output.\end{array}\right]\)| Dogic Control Input. |
| :--- |
| 4a |

TRUTH TABLE
Table 6.

Logic (IN1/IN2)	Switch 1A/2A	Switch 1B/2B
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance vs. $V_{D}\left(V_{S}\right), V_{D D}=4.2 \mathrm{~V}$ to 5.5 V

Figure 6. On Resistance vs. $V_{D}\left(V_{S}\right), V_{D D}=2.7 \mathrm{~V}$ to 3.6 V

Figure 7. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, $V_{D D}=5 \mathrm{~V}$

Figure 8. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, $V_{D D}=4.2 \mathrm{~V}$

Figure 9. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures, $V_{D D}=3 \mathrm{~V}$

Figure 10. Leakage Current vs. Temperature, $V_{D D}=5.5 \mathrm{~V}$

Figure 11. Leakage Current vs. Temperature, $V_{D D}=3.3 \mathrm{~V}$

Figure 12. Threshold Voltage vs. Supply

Figure 13. Charge Injection vs. Source Voltage

Figure 14. ton/toff Time vs. Temperature

Figure 15. Bandwidth

Figure 16. Off Isolation vs. Frequency

Figure 17. Crosstalk vs. Frequency

Figure 18. AC Power Supply Rejection Ratio (PSRR)

Figure 19. Total Harmonic Distortion + Noise

Figure 20. Rise/Fall Time Delay vs. Supply Voltage

Figure 21. Rise/Fall Time Delay vs. Temperature

Figure 22. Rise-Time-to-Fall-Time Mismatch vs. Supply Voltage

Figure 23. Rise-Time-to-Fall-Time Mismatch vs. Temperature

Figure 24. Propagation Delay Skew ($t_{\text {SkEw }}$) vs. Supply Voltage

Figure 25. Propagation Delay Skew ($t_{\text {SkEw }}$) vs. Temperature

Figure 26. Eye Pattern, $12 \mathrm{Mbps}, V_{D D}=4.2 \mathrm{~V}, T_{A}=85^{\circ} \mathrm{C}$, PRBS 31

Figure 27. Eye Pattern, $12 \mathrm{Mbps}, V_{D D}=4.2 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C}$, PRBS 31

TEST CIRCUITS

Figure 32. Break-Before-Make Time Delay, $t_{B B M}$

Figure 33. Charge Injection

ADG787

Figure 34. Off Isolation

Figure 35. Channel-to-Channel Crosstalk (S1A to S1B)

Figure 36. Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK $=20$ LOG $\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{VS}}$
Figure 37. Channel-to-Channel Crosstalk (S1A to S2A)

TERMINOLOGY

$I_{D D}$

Positive supply current.
$V_{D}\left(V_{s}\right)$
Analog voltage on Terminal D and Terminal S.

Ron

Ohmic resistance between D and S .
$\mathrm{R}_{\text {flat (on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.

Δ Ron

On resistance match between any two channels.

Is (OFF)

Source leakage current with the switch off.

ID (OFF)

Drain leakage current with the switch off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{ON})$

Channel leakage current with the switch on.
VinL
Maximum input voltage for Logic 0 .
Vinh
Minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
Input current of the digital input.
C_{s} (OFF)
Off switch source capacitance. Measured with reference to ground.
C_{D} (OFF)
Off switch drain capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{ON})$
On switch capacitance. Measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.
ton
Delay time between the 50% and the 90% points of the digital input and switch on condition.
$t_{\text {OFF }}$
Delay time between the 50% and the 90% points of the digital input and switch off condition.
t $_{\text {ввм }}$
On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during on-off switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled from one channel to another as a result of parasitic capacitance.

-3 dB Bandwidth

The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

THD + N

The ratio of the harmonic amplitudes plus noise of a signal, to the fundamental.

$\mathrm{T}_{\text {skew }}$

The measure of the variation in propagation delay between each channel.

Rise Time Delay

The rise time of a signal is a measure of the time for the signal to rise from 10% of the ON level to 90% of the ON level. Rise time delay is the difference between the rise time, measured at the input, and the rise time, measured at the output.

Fall Time Delay

The fall time of a signal is a measure of the time for the signal to fall from 90% of the ON level to 10% of the ON level. Fall time delay is the difference between the fall time, measured at the input, and the fall time, measured at the output.

Rise-Time-to-Fall-Time Mismatch

This is the absolute value between the variation in the fall time and the rise time, measured at the output.

ADG787

OUTLINE DIMENSIONS

Figure 38. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD] $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body, Very, Very Thin, Dual Lead (CP-10-9) Dimensions shown in millimeters

Figure 39. 10-Lead Mini Small Outline Package [MSOP] (RM-10)
Dimensions shown in millimeters

옹
극
Figure 40. 10-Ball Wafer Level Chip Scale Package [WLCSP] (CB-10)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding ${ }^{1}$
ADG787BRMZ ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package (MSOP)	RM-10	SM1
ADG787BRMZ-500RL7²	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package (MSOP)	RM-10	SM1
ADG787BRMZ-REEL ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package (MSOP)	RM-10	SM1
ADG787BCBZ-500RL7²	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Ball Wafer Level Chip Scale Package (WLCSP)	CB-10	S04
ADG787BCBZ-REEL2	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Ball Wafer Level Chip Scale Package (WLCSP)	CB-10	S04
ADG787BCPZ-500RL7 ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Lead Frame Chip Scale Package (LFCSP_WD)	CP-10-9	SM1
ADG787BCPZ-REEL2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Lead Frame Chip Scale Package (LFCSP_WD)	CP-10-9	SM1

[^2]
ADG787

NOTES

[^0]: ${ }^{1}$ Temperature ranges: B version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the MSOP and LFCSP packages, and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the WLCSP package.
 ${ }^{2}$ Guaranteed by design, not production tested.

[^1]: ${ }^{1}$ Temperature range: B version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the MSOP and LFCSP packages, and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the WLCSP package.
 ${ }^{2}$ Guaranteed by design, not production tested.

[^2]: ${ }^{1}$ Due to space constraints, branding on this package is limited to three characters.
 ${ }^{2} Z=P b$-free part.

