ANALOG DEVICES

8-Chan JFET Analog Multiplexers (Overvoltage \& Power Supply Loss Protected)

MUX-08

FEATURES

- JFET Switches Rather Than CMOS
- Low "ON" Resistance
220Ω Typ
- Highly Resistant to Static Discharge Damage
- No SCR Latch-Up Problems
- Digital Inputs Compatible With TTL and CMOS
- $125^{\circ} \mathrm{C}$ Temperature Tested Dice Available
- MUX-08 Pin Compatible With DG508, HI-508A, IH5108, IH6108, LF11508/12508/13508, AD7506
- MUX-24 is Obsolete and MUX08BRC/883 is Obsolete

ORDERING INFORMATION

See the updated Ordering Guide section at the end of this data sheet for ordering information.

Several products are now obsolete, including the MUX-24 and MUX08BRC/883.

For products that are available as of the current revision of this data sheet, see the updated Outline Dimensions and Ordering Guide sections.

GENERAL DESCRIPTION

The MUX-08 is a monolithic eight-channel analog multiplexer which connects a single output to one of the eight analog inputs depending upon the state of a 3-bit binary address.

The MUX-24 is a monolithic four-channel differential analog multiplexer configured in a double pole, four-position (plus OFF) electronic switch array. A two-bit binary input address connects a pair of independent analog inputs from each four-channel input section to the corresponding pair of independent analog outputs.
All switches in the MUX-08/MUX-24 are turned OFF by applying logic " 0 " to the ENABLE pin, thereby providing a package select function.

Fabricated with Precision Monolithics' high performance Bipolar-JFET technology, these devices offer low, constant "ON" resistance, low leakage currents and fast settling time with low crosstalk to satisfy a wide variety of applications. These multiplexers do not suffer from latch-up or static charge blow-out problems associated with similar CMOS parts. The digital inputs are designed to operate from both TTL and CMOS levels while always providing a definite break-before-make action without the need for external pullup resistors over the full operating temperature range.

The MUX-24 and MUX08BRC/883 are no longer available.

PIN CONNECTIONS

16-PIN CERDIP (Q-Suffix)

FUNCTIONAL DIAGRAMS

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©1978-2019 Analog Devices, Inc. All rights reserved. Technical Support
www.analog.com

ABSOLUTE MAXIMUM RATINGS (Note 1)
Operating Temperature Range
MUX 08124-AO, BQ BRC
02/2
MUX-08/24-EP
MUX-08/24-FP, FS $-40^{\circ} \mathrm{C}$ to +85
Junction Temperature (T_{j}) $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ P-Suffix \qquad $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature $150^{\circ} \mathrm{C}$
V+ Supply to V-Supply ... 36V

Analog Input Voltage V-Supply -20 V to $\mathrm{V}+$ Supply +20 V Maximum Current Through Any Pin 25 mA

PACKAGE TYPE	$\Theta_{\text {Ja }}$ (Note 2)	$\theta_{j c}$	UNITS
16-Pin Hermetic DIP (Q)	100	16	${ }^{\circ} \mathrm{C} / \mathrm{N}$
16-Pin Plastic DIP (P)	82	39	${ }^{\circ} \mathrm{C} / \mathrm{N}$
20-Contact LCC (RC)	98	38	${ }^{\circ} \mathrm{CN}$
16-Pin SO(S)	111	35	${ }^{\circ} \mathrm{C} / \mathrm{N}$

NOTES:

1. Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
2. $\Theta_{i A}$ is specified for worst case mounting conditions, i.e., $\Theta_{j A}$ is specified for device in socket for CerDIP, P-DIP, and LCC packages; $\Theta_{j A}$ is specified for device soldered to printed circuit board for SO package.

ELECTRICAL CHARACTERISTICS at $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS		MUX-08A/E			MUX-08B/F			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
"ON" Resistance	R_{ON}	$\mathrm{V}_{S} \leq 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}} \leq 200 \mu \mathrm{~A}$		-	220	300	-	300	400	Ω
$\Delta \mathrm{R}_{\text {ON }}$ With Applied Voltage	$\Delta \mathrm{R}_{\mathrm{ON}}$	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=200 \mu \mathrm{~A}$		-	1	5	-	3	7	\%
$\mathrm{R}_{\text {ON }}$ Match Between Switches	$\mathrm{R}_{\text {ON }}$ Match	$V_{S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=200 \mu \mathrm{~A}$		-	7	15	-	9	20	\%
Analog Voltage Range	$V_{\text {A }}$	(Note 6)		$\begin{array}{r} +10 \\ -10 \\ \hline \end{array}$	$\begin{array}{r} +10.4 \\ -15 \end{array}$	-	$\begin{aligned} & +10 \\ & -10 \end{aligned}$	$\begin{array}{r} +10.4 \\ -15 \end{array}$	-	V
Source Current (Switch "OFF")	${ }^{\text {S }}$ (OFF)	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$ (Note 1)		-	0.01	1.0	-	0.01	2.0	nA
Drain Current (Switch "OFF")	${ }^{\text {I }}$ (OFF)	$\mathrm{V}_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}($ Note 1$)$	MUX-08 MUX-24	-	$\begin{array}{r} 0.1 \\ 0.05 \end{array}$	1.0 1.0	-	$\begin{array}{r} 0.1 \\ 0.05 \end{array}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	nA
Leakage Current (Switch "ON")	$\begin{aligned} & I_{\mathrm{D}(\mathrm{ON}} \\ & { }^{\mathrm{I}_{\mathrm{SOON}}} \end{aligned}$	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}$ (Note 1)	$\begin{aligned} & \text { MUX-08 } \\ & \text { MUX-24 } \end{aligned}$	-	$\begin{array}{r} 0.1 \\ 0.05 \\ \hline \end{array}$	1.0 1.0	-	0.1 0.05	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	nA
Digital Input Current	${ }_{1}{ }_{\text {IN }}$	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$ to 15 V		-	1	10	-	1	10	$\mu \mathrm{A}$
Digital "0" Enable Current	$1_{\text {INL (EN) }}$	$V_{E N}=0.4 \mathrm{~V}$		-	4	10	-	4	10	$\mu \mathrm{A}$
Digital Input Capacitance	$\mathrm{C}_{\text {DIG }}$			-	3	-	-	3	-	pF
Switching Time ($\mathrm{t}_{\text {TRAN }}$)	$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	(Notes 2, 5) Figure 1 (Test Circuit)		-		2.1 1.3	-	1.5 1.0		$\mu \mathrm{S}$
Output Settling Time	$\mathrm{t}_{\text {S }}$	10 V Step to 0.10% 10V Step to 0.05\% 10V Step to 0.02\%		-	$\begin{aligned} & 2.2 \\ & 2.7 \\ & 3.4 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 2.2 \\ & 2.7 \\ & 3.4 \\ & \hline \end{aligned}$	-	$\mu \mathrm{s}$
Break-Before-Make Delay	${ }^{\text {t OPEN }}$	Figure 3 (Test Circuit)		-	0.8	-	-	1.0	-	$\mu \mathrm{S}$
Enable Delay "ON"	$\mathrm{t}_{\text {ON (EN }}$	(Note 5) Figure 2 (Test Circuit)		-	1	2	-	1	2	$\mu \mathrm{S}$
Enable Delay "OFF"	$t_{\text {OFF (}}$ (EN)	(Note 5) Figure 2 Test Circuit)	$\begin{aligned} & \text { MUX-08 } \\ & \text { MUX-24 } \end{aligned}$	-	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$		-		$\begin{aligned} & 0.4 \\ & 0.6 \end{aligned}$	$\mu \mathrm{S}$
"OFF" Isolation	ISO ${ }_{\text {OFF }}$	(Note 4) Figure 5 (Test Circuit)	$\begin{aligned} & \text { MUX-08 } \\ & \text { MUX-24 } \end{aligned}$	-	$\begin{aligned} & 60 \\ & 66 \end{aligned}$	-	-		-	dB
Crosstalk	CT	(Note 3) Figure 4 (Test Circuit)	$\begin{aligned} & \text { MUX-08 } \\ & \text { MUX-24 } \\ & \hline \end{aligned}$	-	$\begin{aligned} & 70 \\ & 76 \end{aligned}$	-	-	70 76	-	dB
Source Capacitance	$\mathrm{C}_{\text {S (OFF) }}$	Switch "OFF", $V_{S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}$	$\begin{aligned} & \text { MUX-08 } \\ & \text { MUX-24 } \end{aligned}$	-	2.5 2	-	-	2.5 2	-	pF
Drain Capacitance	$\mathrm{C}_{\text {DIOFFi }}$	Switch "OFF", $V_{S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}$	$\begin{aligned} & \text { MUX-08 } \\ & \text { MUX-24 } \end{aligned}$	-	7 4	-	-	7 4	-	pF
Input to Output Capacitance	$\mathrm{CuSOH}_{\text {a }}$	(Note 4)	$\begin{aligned} & \text { MUX-08 } \\ & \text { MUX-24 } \\ & \hline \end{aligned}$	-	$\begin{array}{r} 0.3 \\ 0.15 \\ \hline \end{array}$	-	$-$	$\begin{array}{r} 0.3 \\ 0.15 \\ \hline \end{array}$	-	pF
Positive Supply Current (Al) Digital Inputs Logic "0" or "1")	$1+$	$\begin{aligned} & V+=15 \mathrm{~V} \\ & \mathrm{~V}+=5 \mathrm{~V} \end{aligned}$		-	10 8	12	-	6 5	12	mA
Negative Supply Current (All Digital Inputs Logic "0" or "1")	1-	$\begin{aligned} & \mathrm{V}+=-15 \mathrm{~V} \\ & \mathrm{~V}+=-5 \mathrm{~V} \end{aligned}$		-	3.0 2.5	3.8 -	-	2.0 1.8	3.8 -	mA

ELECTRICAL CHARACTERISTICS at $\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, unless otherwise noted.

				MUX-08A			MUX-08B			UNITS
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
"ON" Resistance	R_{ON}	$V_{S} \leq 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}} \leq 200 \mu \mathrm{~A}$		-	-	425	-	-	500	Ω
$\Delta \mathrm{R}_{\text {ON }}$ With Applied Voltage	$\Delta \mathrm{R}_{\text {ON }}$	$-10 \mathrm{~V} \leq \mathrm{V}_{S} \leq 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=200 \mu \mathrm{~A}$		-	1.5	-	-	4.5	-	\%
$\mathrm{R}_{\text {ON }}$ Match Between Switches	$\mathrm{R}_{\text {ON }}$ Match	$V_{S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=200 \mu \mathrm{~A}$		-	10	-	-	15	-	\%
Analog Voltage Range	$V_{\text {A }}$	(Note 6)			$\begin{array}{r} +10.4 \\ -15 \\ \hline \end{array}$	-		$\begin{array}{r} +10.4 \\ -15 \end{array}$	-	V
Source Current (Switch "OFF")	$\mathrm{I}_{\mathrm{S} \text { (OFF) }}$	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}($ Notes 1, 7)		-	-	25	-	-	50	nA
Drain Current (Switch "OFF")	ID (OFF)	$\begin{aligned} & V_{S}=10 \mathrm{~V}, V_{D}=-10 \mathrm{~V} \\ & (\text { Notes } 1,7) \end{aligned}$	MUX-08 MUX-24	-	-	$\begin{array}{r} 100 \\ 50 \\ \hline \end{array}$	-	-	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	nA
Leakage Current (Switch "ON")	$\begin{aligned} & I_{\mathrm{D}(\mathrm{ON})} \\ & +\mathrm{I}_{\mathrm{S}(\mathrm{ON})} \end{aligned}$	$V_{D}=10 \mathrm{~V}($ Notes 1,7)	MUX-08 MUX-24	-	-	$\begin{array}{r} 100 \\ 50 \end{array}$	-	-	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	nA
Digital "1" Input Voltage	$\mathrm{V}_{\text {INH }}$	(Note 6)		2	-	-	2	-	-	V
Digital "0" Input Voltage	$\mathrm{V}_{\text {INL }}$	(Note 6)		-	-	0.7	-	-	0.7	V
Digital Input Current	$\mathrm{I}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$ to 15 V		-	-	20	-	-	20	$\mu \mathrm{A}$
Digital "0" Enable Current	$\mathrm{I}_{\text {INL (EN) }}$	$\mathrm{V}_{\mathrm{EN}}=0.4 \mathrm{~V}$		-	-	20	-	-	20	$\mu \mathrm{A}$
Positive Supply Current	I+	All Digital Inputs Logic "0" or "1"		-	-	15	-	-	15	mA
Negative Supply Current	I-	All Digital Inputs Logic "0" or " 1 "		-	-	5	-	-	5	mA

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{+}=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$ and $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}+85^{\circ} \mathrm{C}$ for MUX-08EQ/FQ and MUX-24EQ/FQ $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ for MUX-08EP and MUX-24EP; $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ for MUX-08FP/FS and MUX-24FP/FS, unless otherwise noted

				MUX-08E			MUX-08F			UNITS
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
"ON" Resistance	R_{ON}	$\mathrm{V}_{S} \leq 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}} \leq 200 \mu \mathrm{~A}$		-	-	400	-	-	500	Ω
$\Delta \mathrm{R}_{\text {ON }}$ With Applied Voltage	$\Delta \mathrm{R}_{\mathrm{ON}}$	$-10 \mathrm{~V} \leq \mathrm{V}_{S} \leq 10 \mathrm{~V}, \mathrm{I}_{S}=200 \mu \mathrm{~A}$		-	1.5	-	-	4.5	-	\%
$\mathrm{R}_{\text {ON }}$ Match Between Switches	RON Match	$\mathrm{V}_{S}=0 \mathrm{~V}, \mathrm{I}_{S}=200 \mu \mathrm{~A}$		-	10	-	-	15	-	\%
Analog Voltage Range	$V_{\text {A }}$	(Note 6)			$\begin{array}{r} +10.4 \\ -15 \end{array}$	-		$\begin{array}{r} +10.4 \\ -15 \end{array}$	-	V
Source Current (Switch "OFF")	$\mathrm{I}_{\mathrm{S} \text { (} \mathrm{OFF})}$	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}($ Notes 1, 7)		-	-	10	-	-	10	$n \mathrm{~A}$
Drain Current (Switch "OFF")	ID (OFF)	$V_{S}=10 \mathrm{~V}, V_{D}=10 \mathrm{~V}$ (Notes 1, 7)	MUX-08 MUX-24	-	-		-	-		nA
Leakage Current (Switch "ON")	$\begin{aligned} & I_{\mathrm{D}(\mathrm{ON})} \\ & +\mathrm{I}_{\mathrm{S}(\mathrm{ON})} \\ & \hline \end{aligned}$	$V_{D}=10 \mathrm{~V}($ Notes 1, 7)	$\begin{aligned} & \text { MUX-08 } \\ & \text { MUX-24 } \end{aligned}$	-	-	$\begin{array}{r}100 \\ 50 \\ \hline\end{array}$	-	-		nA
Digital "1" Input Voltage	$\mathrm{V}_{\text {INH }}$	(Note 6)		2	-	-	2	-	-	V
Digital "0" Input Voltage	$\mathrm{V}_{\mathrm{INL}}$	(Note 6)		-	-	0.8	-	-	0.8	V
Digital Input Current	I_{N}	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$ to 15 V		-	-	20	-	-	20	$\mu \mathrm{A}$
Digital "O" Enable Current	$\mathrm{I}_{\mathrm{NL}(\mathrm{EN})}$	$\mathrm{V}_{\mathrm{EN}}=0.4 \mathrm{~V}$		-	--	20		-	20	$\mu \mathrm{A}$
Fositive Supply Current	I +	All Digital Inputs Logic "0" or "1"		-	-	15	-	-	15	mA
Negative Supply Current	$1-$	All Digital Inputs Logic "0" or "1"		-	-	5	-	-	5	mA

NOTES:

1. Conditions applied to leakage tests insure worst case leakages. Exceeding 11V on the analog input may cause an "OFF" channel to turn "ON".
2. $R_{L}=10 \mathrm{M} \Omega, C_{L}=10 \mathrm{pF}$.
3. Crosstalk is measured by driving channel 8 with channel 4 "ON". $R_{L}=1 M \Omega, C_{L}=10 p F, V_{S}=5 \mathrm{~V}$ RMS, $f=500 \mathrm{kHz}$.
4. "OFF" isolation is measured by driving channel 8 with ALL channels "OFF". $R_{L}=1 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ RMS, $\mathrm{f}=500 \mathrm{kHz} . \mathrm{C}_{\mathrm{DS}}$ is computed from the OFF isolation measurement.
5. Sample tested.
6. Guaranteed by leakage curient and $R_{O N}$ lests.
7. Leakage tests are performed only on military temperature grades at $125^{\circ} \mathrm{C}$.

MUX-08

DICE CHARACTERISTICS ($125^{\circ} \mathrm{C}$ TESTED DICE AVAILABLE)

	MUX-08 DIE SIZE 0.093×0.059 inch, 5487 sq. mil ($2.362 \times 1.500 \mathrm{~mm}, 3543 \mathrm{sq} . \mathrm{mm}$)
1. AO	
2. ENABLE	
3. V-(SUBSTRATE)	
4. 51	
5. S2	
6. 53	
7. 54	
8. DRAIN	

WAFER TEST LIMITS at $\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. (Note 1)

PARAMETER	SYMBOL	CONDITIONS		$\begin{aligned} & \text { MUX-08/ } \\ & \text { MUX-24NT } \end{aligned}$	$\begin{aligned} & \text { MUX-08/ } \\ & \text { MUX-24N } \end{aligned}$	$\begin{aligned} & \text { MUX-08/ } \\ & \text { MUX-24G } \end{aligned}$	UNITS
				LIMIT	LIMIT	LIMIT	
"ON" Resistance	R_{ON}	$\begin{aligned} & V_{S}=0 V \\ & I_{S}=200 \mu \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	$\begin{aligned} & 300 \\ & 400 \end{aligned}$			() MAX
Digital "1" Input Voltage	$\mathrm{V}_{\text {INH }}$	(Note 2)		2	2	2	$V \mathrm{MIN}$
Digital " 0 " Input Voltage	$V_{\text {inL }}$	(Note 2)		0.8	0.8	0.8	\checkmark MAX
Digital "0" Input Current	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{1 \mathrm{~N}}=0.4 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$			$\mu A \mathrm{MAX}$
Digital "0" Enable Current	IINL, EN:	$V_{\text {IN }}=0.4 V$	$T_{A}=125^{\circ} \mathrm{C}$	$\begin{array}{r} 10 \\ 20 \\ \hline \end{array}$			$\mu \mathrm{A}$ MAX
Positive Supply Current (All Digital Inputs Logic "0")	$1+$		$T_{A}=125^{\circ} \mathrm{C}$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$		12	mA MAX
Negative Supply Current (All Digital Inputs Logic " 0 ")	$1-$		$T_{A}=125^{\circ} \mathrm{C}$	$\begin{array}{r} 3.8 \\ 5 \end{array}$	3.8	3.8	mA MAX
Aralog input Range	$V_{\text {A }}$	(Note 2)		± 10	± 10	± 10	\checkmark MIN

NOTE:

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly mehtods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TYPICAL ELECTRICAL CHARACTERISTICS at $\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ for $\mathrm{MUX}-08 / 24 \mathrm{~N}$ \& $\mathrm{G}, \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ for MUX-08/24NT, unless otherwise noted.
$\left.\begin{array}{llllll}\hline & & & \begin{array}{c}\text { MUX-08/ } \\ \text { MUX-24NT } \\ \text { TYPICAL }\end{array} & \begin{array}{c}\text { MUX-08/ } \\ \text { MUX-24N } \\ \text { TYPICAL }\end{array} & \begin{array}{c}\text { MUX-08/ } \\ \text { MUX-24G }\end{array} \\ \text { TYPICAL }\end{array}\right]$

NOTES:

1. The data shown is extrapolated from measurements made on the 2. Guaranteed by leakage current and $R_{O N}$ tests. packaged devices.

MUX-08 LOGIC STATE				
A_{2}	A_{1}	A_{0}	EN	"ON" CHANNEL
X	X	X	L	NONE
L	L	L	H	1
L	L	H	H	2
L	H	L	H	3
L	H	H	H	4
H	L	L	H	5
H	L	H	H	6
H	H	L	H	7
H	H	H	H	8

TYPICAL PERFORMANCE CHARACTERISTICS (Applies to all grades, unless otherwise noted.)

MUX-08
SMALL-SIGNAL SWITCHING WITH $2 \mu 8$ SAMPLE TIME

MUX-08
SMALL-SIGNAL SWITCHING

MUX-08
SMALL-SIGNAL SWITCHING WITH FILTERING AND $2.5 \mu 8$ SAMPLE TIME

$R_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{V}_{1}=-500 \mathrm{mV}, \mathrm{V}_{8}=+500 \mathrm{mv}$ VOLTAGE $=500 \mathrm{mV} / \mathrm{DIV}$
$\mathrm{T} I M E=500 \mathrm{~ms} / \mathrm{DIV}$

NOTE:
Top waveforms: Digital Input 5V/DIV Bottom waveforms: Multiplexer Output

TYPICAL PERFORMANCE CHARACTERISTICS (Applies to all grades, unless otherwise noted.)

ENABLE DELAY TIMES vs TEMPERATURE

MUX-08 CROSSTALK AND OFF ISOLATION PERFORMANCE OF CHANNEL 8

Ron vs TEMPERATURE

TRANSITION TIMES vs TEMPERATURE

R $_{\text {ON }}$ vs SWITCH VOLTAGE ($\mathbf{V S D}_{\text {SD }}$)

SWITCH LEAKAGE CURRENTS vs ANALOG INPUT VOLTAGE

TYPICAL PERFORMANCE CHARACTERISTICS (Applies to all grades, unless otherwise noted.)

SUPPLY CURRENTS vs TEMPERATURE

MUX-24
SMALL-SIGNAL SWITCHING WITH FILTERING

$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{G}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{V}_{1}=-500 \mathrm{mV}$,
$R_{L}=1 M \Omega . C_{L}$
$V_{4}=+500 \mathrm{mV}$
VOLTAGE $-500 \mathrm{mV} / \mathrm{DIV}$, TIME $-1 \mu \mathrm{~s} / \mathrm{DIV}$

MUX-24
BREAK-BEFORE-MAKE SWITCHING

$\mathrm{R}_{\mathrm{L}}=1 \overline{\mathrm{k}} \Omega, \mathrm{CL}=10 \mathrm{pF}, \mathrm{V}_{1,4}=10 \mathrm{~V}$ VOLTAGE $=2 \mathrm{~V} /$ DIV, TIME $=200 \mathrm{~ns} /$ DIV

MUX-08
SWITCH CAPACITANCES vs ANALOG INPUT VOLTAGE

MUX-24
SMALL-SIGNAL SWITCHING WITH $\mathbf{2 \mu s}$ SAMPLE TIME

$R_{\mathrm{L}}=\mathrm{IM} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{1}=-500 \mathrm{mV}$.
$V_{4}=+500 \mathrm{mV}$
VOLTAGE $=500 \mathrm{mV} / \mathrm{DIV}$, TIME $=500 \mathrm{~ns} / \mathrm{DIV}$

MUX-24
LARGE-SIGNAL SWITCHING

NOTE:
Top waveforms: Digital Input 5V/DIV Bottom waveforms: Multiplexer Output

MUX-08

TYPICAL PERFORMANCE CHARACTERISTICS (Applles to all grades, unless otherwise noted.)

A.C. TEST CIRCUITS

TRANSITION TIME TEST CIRCUIT

Figure 1
() denotes mux-24

ENABLE DELAY TIME TEST CIRCUIT

BREAK-BEFORE-MAKE TEST CIRCUIT

Figure 3
() DENOTES MUX-24

CROSSTALK MEASUREMENT CIRCUIT

Figure 4

A.C. TEST CIRCUITS

OFF-ISOLATION MEASUREMENT CIRCUIT

Figure 5

SWITCHING TIME WAVEFORMS

APPLICATIONS INFORMATION

These analog multiplexers employ ion-implanted JFETs in a switch configuration designed to assure break-before-make action. The turn-off time is much faster than the turn-on time to guarantee this feature over the full operating temperature and input voltage range. Fabricated with Bipolar-JFET processing, special handiling as required with CMOS devices, is not necessary to prevent damage to this multiplexer. Because the digital inputs only require a 2.0 V logic " 1 " input level, power-consuming pull-up resistors are not required for TTL compatibility to insure break-make switching as is most often the case with CMOS multiplexers. The digital inputs utilize PNP input transistors where input current is maximum at the logic " 0 " level and drops to that of a reverse-biased diode (about 10 nA) as the input voltage is raised above $\approx 1.4 \mathrm{~V}$.

The "ON" resistance, R R_{ON}, of the analog switches is constant over the wide input voltage range of -15 V to +11 V with $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$. Higher input voltage is tolerable provided that some form of current limiting is employed (such as that of an op-amp output stage) to avoid exceeding junction temperature and power dissipation requirements. For normal operation, however, positive input voltages should be restricted to 11 V (or 4 V less than the positive supply). This assures that the $V_{G S}$ of an "OFF" switch remains greater than its V_{p}, and prevents that channel from being falsely turned "ON". When operating with negative input voltages, the gate-tochannel diode will be turned on if the voltage drop across an "ON" switch exceeds -0.6 V . While this condition will cause an error in the output, it will not damage the switch. In lab tests, the multiplexer output has been loaded with a $0.01 \mu \mathrm{~F}$ capacitor in the circuit of Figure 1 . With $\mathrm{V}_{1}=-10 \mathrm{~V}$ and $\mathrm{V}_{8}=+10 \mathrm{~V}$, the logic input was driven at a 1 kHz rate. The positive-going slew rate was $0.3 \mathrm{~V} / \mu \mathrm{s}$ which is equivalent to a normal loss of 3 mA . The negative-going slew rate was $0.7 \mathrm{~V} / \mu \mathrm{s}$ which is equivalent to a "reverse" I Dss of 7 mA . Note that when switch 1 is first turned "ON" it has a drop of -20 V across its terminals. In spite of that fact, the current is limited to approximately twice its normal loss.

CROSSTALK AND OFF-ISOLATION

Crosstalk and off-isolation performance is influenced by the type of package selected. Epoxy (P) packaged devices typically exhibit a 12dB improvement in off-isolation ($f=500 \mathrm{kHz}$) performance when compared to ceramic (Q) packaged devices. Epoxy packaged devices typically exhibit a 15 dB improvement in crosstalk ($\mathrm{f}=500 \mathrm{kHz}$) performance when compared to ceramic (Q) packaged devices.

SINGLE SUPPLY OPERATION OF JFET MULTIPLEXERS

PMI's JFET multiplexers will operate from a single positive supply voltage with the negative supply pin at ground potential. The analog signal range will include ground.

For complete single supply operation information, refer to application note, AN-32.

SIMPLIFIED MUX-08 SCHEMATIC

The simplified MUX-08/MUX-24 schematic shows that logic trip points are determined by two forward diode drops. An internal clamping diode between V - and ground prevents excessive current flow between $\mathrm{V}+$ and ground in the event that V - becomes open circuit. The decoding matrix is accomplished by a programmed diode array. The switch cell consists of P channel JFET's with appropriate blocking diodes which ruggedizes the circuit's overvoltage and supply loss characteristics.

MUX-08

TYPICAL PERFORMANCE CHARACTERISTICS

POWER-LOSS V-I CHARACTERISTIC

OVERVOLTAGE/POWER-LOSS MEASUREMENT TEST CIRCUIT

OUTLINE DIMENSIONS

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 6. 20-Terminal Ceramic Leadless Chip Carrier [LCC]

$$
(E-20-1)
$$

Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MS-001-BB
Figure 7. 16-Lead Plastic Dual In-Line Package [PDIP] Narrow Body
(N -16)
Dimensions shown in inches

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR

Figure 8. 16-Lead Ceramic Dual In-Line Package [CERDIP] (Q-16)
Dimensions shown in inches and (millimeters)
Rev. C| Page 12 of 14

Figure 9. 16-Lead Standard Small Outline Package [SOIC N] Narrow Body
(R-16)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
MUX08EPZ	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 -Lead PDIP	$\mathrm{N}-16$
MUX08EQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead CERDIP	$\mathrm{Q}-16$
MUX08FPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead PDIP	$\mathrm{N}-16$
MUX08FQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead CERDIP	$\mathrm{Q}-16$
MUX08FSZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC_N	$\mathrm{R}-16$
MUX08NBC	$25^{\circ} \mathrm{C}$	DIE	
$5962-8771601 \mathrm{EA}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead CERDIP	$\mathrm{Q}-16$
$5962-87716022 \mathrm{~A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Terminal Ceramic LCC	$\mathrm{E}-20-1$
$5962-8771602 \mathrm{EA}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead CERDIP	$\mathrm{Q}-16$
MUX08AQ/883C	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead CERDIP	$\mathrm{Q}-16$
MUX08BQ/883C	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead CERDIP	$\mathrm{Q}-16$

[^0]
REVISION HISTORY

5/2019—Rev. B to Rev C
Obsoleted MUX-24 and MUX08BRC/883
\qquad Universal
Deleted MUX-24 Functional Diagram.
\qquad
Changes to Features Section, Ordering information Section, and General Description Section.
\qquad
Changed MUX-08A/E MUX-24A/E Column to MUX-08A/E Column, Electrical Characteristics Table and MUX-08B/F MUX-24B/F Column to MUX-08B/F Column, Electrical Characteristics Table.
\qquad ... 2
Changed MUX-08A/MUX-24A Column to MUX-08A Column and MUX-08B/MUX-24B Column to MUX-08B Column,

Electrical Characteristics Table, and MUX-08E/MUX-24E Columnto MUX-08E Column and MUX-08F/MUX-24F Column toMUX-08F Column, Electrical Characteristics Table. 3
Change to "ON" Resistance Parameter, MUX-08A 3
Deleted MUX-24 Dice Characteristics. 4
Deleted MUX-24 Logic State Table 5
Deleted Differential Multiplexers and Figure 6 10
Added Outlines Dimension Section 12
Added Ordering Guide 13

[^0]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part

