

Automotive Audio Bus A²B Transceiver

Data Sheet

AD2421W/AD2422W/AD2425W

A2B BUS FEATURES

Line topology

Single master, multiple slave

Up to 15 m between nodes and up to 40 m overall cable length

Communication over distance

Synchronous data

Multichannel I²S/TDM to I²S/TDM

Clock synchronous, phase aligned in all nodes

Low latency slave to slave communication

Control and status information I²C to I²C

GPIO over distance

Phantom power or local power slave nodes Configurable with SigmaStudio graphical software tool Qualified for automotive applications

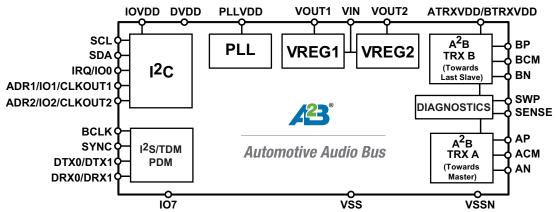
ADDITIONAL TRANSCEIVER FEATURES

Configurable as A^2B bus master or slave (AD2425W) I^2C interface

8-bit to 32-bit multichannel I²S/TDM interface I²S/TDM/PDM programmable data rate Up to 32 upstream and 32 downstream channels PDM inputs for 4 high dynamic range microphones

APPLICATIONS

Automotive audio communication link
Active noise cancellation
Microphone arrays for hands free and in car communication


GENERAL DESCRIPTION

The Automotive Audio Bus $(A^2B^{\$})$ provides a multichannel, I^2S/TDM link over distances of up to 15 m between nodes. It embeds bidirectional synchronous data (for example digital audio), clock, and synchronization signals onto a single differential wire pair. A^2B supports a direct point to point connection and allows multiple, daisy-chained nodes at different locations to contribute or consume time division multiplexed channel content. A^2B is a single-master, multiple-slave system where the transceiver chip at the host controller is the master. The master generates clock, synchronization, and framing for all slave nodes. The master A^2B chip is programmable over a control bus (I^2C) for configuration and read back. An extension of this control bus is embedded in the A^2B data stream, which grants direct access of registers and status information on slave transceivers as well as I^2C to I^2C communication over distance.

Table 1. Product Comparison Guide

Feature	AD2421W	AD2422W	AD2425W
Master capable	No	No	Yes
Functional TRX blocks	A only	A + B	A + B
I ² S/TDM support	No	No	Yes
PDM microphone inputs	4 mics	4 mics	4 mics
Maximum node to node cable length	15 m	15 m	15 m

FUNCTIONAL BLOCK DIAGRAM

The A²B and the A²B logos are registered trademarks of Analog Devices, Inc.

Rev. SpB Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.
Tel: 781.329.4700 ©2017 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com

 $I^2C\ refers\ to\ a\ communications\ protocol\ originally\ developed\ by\ Philips\ Semiconductors\ (now\ NXP\ Semiconductors).$

©2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

D14853F-0-11/17(SpB)

www.analog.com