FEATURES

14Ω (maximum) on resistance
1.4Ω (maximum) on-resistance flatness
2.7 V to 5.5 V single supply
$\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ dual supply
Rail-to-rail operation
8-lead SOT-23
Typical power consumption (<0.1 $\mu \mathrm{W}$)
TTL-/CMOS-compatible inputs
Supports defense and aerospace applications (AQEC standard)
Military temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Controlled manufacturing baseline
One assembly and test site
One fabrication site
Enhanced product change notification
Qualification data available on request

APPLICATIONS

Automatic test equipment
Power routing
Communication systems
Data acquisition systems
Sample-and-hold systems
Avionics
Relay replacement
Battery-powered systems

GENERAL DESCRIPTION

The ADG619-EP is a monolithic, CMOS single-pole doublethrow (SPDT) switch.

The ADG619-EP offers a low on resistance of 4Ω, which is matched to within 0.7Ω between channels. These switches also provide low power dissipation, yet result in high switching speeds. The ADG619-EP exhibits break-before-make switching action, thus preventing momentary shorting when switching channels.

The ADG619-EP is available in an 8-lead SOT-23 package.
Additional application and technical information can be found in the ADG619 data sheet.

FUNCTIONAL BLOCK DIAGRAM

NOTES A LOGIC 1 INPUT.

Figure 1.

PRODUCT HIGHLIGHTS

1. Low on resistance $\left(\mathrm{R}_{\mathrm{ON}}\right): 4 \Omega$ typical.
2. Dual $\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ or single 2.7 V to 5.5 V supplies.
3. Low power dissipation.
4. Fast $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\text {OFF }}$.
5. Tiny, 8-lead SOT-23 package.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADG619-EP

TABLE OF CONTENTS

Features .. 1	Single Supply.. 4
Applications... 1	Absolute Maximum Ratings ... 5

REVISION HISTORY

11/10—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$. All specifications $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (R_{ON}) R_{ON} Match Between Channels $\left(\Delta \mathrm{R}_{\mathrm{ON}}\right)$ On-Resistance Flatness ($\mathrm{R}_{\text {FLAT (ON) }}$)	4 6.5 0.7 1.1 0.7 1.35	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 10 \\ & 1.45 \\ & 1.6 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA} ; \text { see Figure } 9 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, I_{S} (Off) Channel On Leakage, $I_{D}, I_{S}(O n)$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	± 3 ± 25	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 10 \end{aligned}$ $V_{S}=V_{D}= \pm 4.5 \mathrm{~V} \text {; see Figure } 11$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current, $\mathrm{I}_{\mathrm{ILL}}$ or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\begin{aligned} & 0.005 \\ & 2 \\ & \hline \end{aligned}$	$\begin{gathered} 2.4 \\ 0.8 \\ \pm 0.1 \end{gathered}$	\vee min V max μA typ $\mu \mathrm{A} \max$ pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ t_{ON} $t_{\text {OFF }}$ Break-Before-Make Time Delay, $\mathrm{t}_{\text {вв }}$ Charge Injection Off Isolation Channel-to-Channel Crosstalk Bandwidth -3 dB C_{5} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}$ (On)	$\begin{aligned} & 80 \\ & 120 \\ & 45 \\ & 75 \\ & 40 \\ & \\ & 110 \\ & -67 \\ & -67 \\ & 190 \\ & 25 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & 215 \\ & 105 \\ & 10 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3.3 \mathrm{~V} \text {; see Figure } 12 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3.3 \mathrm{~V} ; \text { see Figure } 12 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3.3 \mathrm{~V} ; \text { see Figure } 13 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {; see Figure } 14 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 15 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 16 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { see Figure } 17 \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS $\begin{aligned} & \mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{SS}} \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

[^0]
ADG619-EP

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$. All specifications $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.

Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (R_{ON}) R_{ON} Match Between Channels $\left(\Delta \mathrm{R}_{\mathrm{ON}}\right)$ On-Resistance Flatness ($\mathrm{R}_{\text {FLAT (ON) }}$)	$\begin{aligned} & 7 \\ & 10 \\ & 0.8 \\ & 1.1 \\ & 0.5 \end{aligned}$	0 V to V_{DD} 14 1.4 1.4	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA} ; \text { see Figure } 9 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \text { to } 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, I_{S} (Off) Channel On Leakage, $I_{D}, I_{S}(O n)$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	± 3 ± 25	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 10 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \text {; see Figure } 11 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, I_{NL} or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\begin{aligned} & 0.005 \\ & 2 \\ & \hline \end{aligned}$	$\begin{gathered} 2.4 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min \checkmark max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ t_{ON} $\mathrm{t}_{\text {OFF }}$ Break-Before-Make Time Delay, $\mathrm{t}_{\text {вв }}$ Charge Injection Off Isolation Channel-to-Channel Crosstalk Bandwidth -3 dB C_{S} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 120 \\ & 220 \\ & 50 \\ & 75 \\ & 70 \\ & \\ & 6 \\ & -67 \\ & -67 \\ & 190 \\ & 25 \\ & 95 \end{aligned}$	$\begin{aligned} & 390 \\ & 135 \\ & 10 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3.3 \mathrm{~V} ; \text { see Figure } 12 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3.3 \mathrm{~V} ; \text { see Figure } 12 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3.3 \mathrm{~V} \text {; see Figure } 13 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {; see Figure } 14 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { see Figure } 15 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { see Figure } 16 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { see Figure } 17 \\ & \mathrm{f}=1 \mathrm{mHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS I_{DD}	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Rating
V_{DD} to V_{SS}	13 V
$\mathrm{~V}_{\mathrm{DD}}$ to GND	-0.3 V to +6.5 V
$\mathrm{~V}_{\mathrm{SS}}$ to GND	+0.3 V to -6.5 V
Analog Inputs ${ }^{1}$	$\mathrm{~V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA
	$($ whicheve occurs first)
Peak Current, S or D	100 mA (pulsed at 1 ms,
	10% duty cycle maximum)
Continuous Current, S or D	50 mA
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal impedance	
$\quad \theta_{\mathrm{JA}}$	$229.6^{\circ} \mathrm{C} / \mathrm{W}$
θ_{C}	$91.99^{\circ} \mathrm{C} / \mathrm{W}$
Lead Soldering	
Reflow, Peak Temperature	$260(+0 /-5)^{\circ} \mathrm{C}$
Time at Peak Temperature	20 sec to 40 sec

[^2]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at a time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADG619-EP

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	D	Drain Terminal. Can be an input or output.
2	S1	Source Terminal. Can be an input or output.
3	GND	Ground (0 V) Reference.
4	V $_{\text {DD }}$	Most Positive Power Supply.
5	NC	No Connect. Not internally connected.
6	IN	Logic Control Input.
7	V $_{\text {SS }}$	Most Negative Power Supply. This pin is only used in dual-supply applications and should be tied to
8	S2	ground in single-supply applications.
8	Source Terminal. Can be an input or output.	

Table 5. Truth Table for the ADG619-EP

IN	Switch S1	Switch S2
0	On	Off
1	Off	On

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. V_{D}, V_{S} (Dual Supply)

Figure 4. On Resistance vs. V_{D}, V_{S} (Single Supply)

Figure 5. On Resistance vs. V_{D}, V_{S} for Different Temperatures (Dual Supply)

Figure 6. On Resistance vs. V_{D}, V_{S} for Different Temperatures (Single Supply)

Figure 7. Leakage Currents vs. Temperature (Dual Supply)

Figure 8. Leakage Currents vs. Temperature (Single Supply)

ADG619-EP

TEST CIRCUITS

Figure 9. On Resistance

Figure 10. Off Leakage

Figure 11. On Leakage

Figure 13. Break-Before-Make Time Delay, $t_{B B M}$

Figure 14. Charge Injection

Figure 15. Off Isolation

Figure 16. Channel-to-Channel Crosstalk

Figure 17. Bandwidth

ADG619-EP

OUTLINE DIMENSIONS

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding 2
ADG619SRJZ-EP-RL7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Small Outline Transistor Package [SOT-23]	RJ-8	S3V

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2}$ Branding on SOT-23 packages is limited to three characters due to space constraints

ADG619-EP

NOTES

ADG619-EP

NOTES

Rev. $0 \mid$ Page 12 of 12

[^0]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]: ${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

