FEATURES
Low On Resistance 0.8Ω Max at $125^{\circ} \mathrm{C}$
0.25Ω Max On Resistance Flatness
1.8 V to 5.5 V Single Supply

200 mA Current Carrying Capability
Automotive Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Rail-to-Rail Operation
6-Lead SOT-23 Package, 8-Lead μ SOIC Package, and
6-Bump MicroCSP (Micro Chip Scale Package) ADG819
Fast Switching Times
Typical Power Consumption ($<0.01 \mu \mathrm{~W}$)
TTL-/CMOS-Compatible Inputs
Pin Compatible with the ADG719 (ADG819)

APPLICATIONS

Power Routing
Battery-Powered Systems
Communication Systems
Data Acquisition Systems
Cellular Phones
Modems
PCMCIA Cards
Hard Drives
Relay Replacement

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC " 1 " INPUT

GENERAL DESCRIPTION

The ADG 819 and the AD G 820 are monolithic, CM OS, SPDT (single-pole, double-throw) switches. T hese switches are designed on a submicron process that provides low power dissipation yet gives high switching speed, Iow On resistance, and low leakage currents.
Low power consumption and an operating supply range of 1.8 V to 5.5 V make the AD G 819 and AD G 820 ideal for battery-powered, portable instruments.
Each switch of the AD G819 and the AD G820 conducts equally well in both directions when on. The AD G 819 exhibits break-before-make switching action, thus preventing momentary shorting when switching channels. T he AD G 820 exhibits make-beforebreak action.
The AD G 819 and the AD G 820 are available in a 6-lead SOT-23 package and an 8 -lead μ SOIC package. The AD G 819 is also available in a 2×3 bump $1.14 \mathrm{~mm} \times 2.18 \mathrm{~mm}$ M icroCSP package. T his chip occupies only a $1.14 \mathrm{~mm} \times 2.18 \mathrm{~mm}$ area, making it the ideal candidate for space-constrained applications.

PRODUCT HIGHLIGHTS

1. Very low ON resistance, 0.5Ω typical
2. 1.8 V to 5.5 V single-supply operation
3. High current carrying capability
4. T iny 6 -lead SOT-23 package, 8 -lead μ SOIC package, and 2×3 bump $1.14 \mathrm{~mm} \times 2.18 \mathrm{~mm}$ M icroCSP package (AD G 819 only)

REV. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
Fax: 781/326-8703
© Analog Devices, Inc., 2002

ADG819/ADG820-SPECIFICATIONS ${ }^{1}$
 $\left(V_{D D}=5 V \pm 10 \%, G N D=0 V.\right)$

NOTES
${ }^{1} \mathrm{~T}$ emperature range is as follows: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2} \mathrm{ON}$ resistance parameters tested with $\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$.
${ }^{3} \mathrm{G}$ uaranteed by design, not subject to production test.
Specifications subject to change without notice.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& \(25^{\circ} \mathrm{C}\) \& \[
-40^{\circ} \mathrm{C} \text { to }
\]
\[
+85^{\circ} \mathrm{C}
\] \& \[
\begin{aligned}
\& -40^{\circ} \mathrm{C} \text { to } \\
\& +125^{\circ} \mathrm{C}^{2}
\end{aligned}
\] \& Unit \& Test Conditions/Comments \\
\hline \begin{tabular}{l}
ANALOG SWITCH Analog Signal Range ON Resistance (Ron) \\
ON Resistance \(M\) atch Between Channels (\(\Delta \mathrm{R}_{\mathrm{on}}\)) \\
ON Resistance Flatness (\(\mathrm{R}_{\text {FLAT(ON) }}\))
\end{tabular} \& \[
\begin{aligned}
\& 0.7 \\
\& 1.4 \\
\& 0.06 \\
\& 0.25 \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
1.5 \\
0.13
\end{tabular} \& \[
\begin{aligned}
\& 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\
\& 1.6 \\
\& 0.13
\end{aligned}
\] \& \[
\begin{aligned}
\& V \\
\& \Omega \operatorname{typ} \\
\& \Omega \max \\
\& \Omega \operatorname{typ} \\
\& \Omega \max \\
\& \Omega \operatorname{typ} \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
\[
V_{S}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} ;
\] \\
T est Circuit 1
\[
\begin{aligned}
\& V_{S}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \\
\& \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA}
\end{aligned}
\]
\end{tabular} \\
\hline \begin{tabular}{l}
LEAKAGE CURRENTS \\
Source OFF Leakage IS (OFF) \\
Channel ON Leakage \(I_{D}, I_{S}(O N)\)
\end{tabular} \& \[
\begin{aligned}
\& \pm 0.01 \\
\& \pm 0.25 \\
\& \pm 0.01 \\
\& \pm 0.25 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \pm 3 \\
\& \pm 3
\end{aligned}
\] \& \[
\begin{array}{r}
\pm 10 \\
\pm 25 \\
\hline
\end{array}
\] \& nA typ nA max nA typ nA max \& \[
\begin{aligned}
\& \mathrm{V}_{D D}=3.6 \mathrm{~V} \\
\& \mathrm{~V}_{\mathrm{S}}=3.3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{D}=1 \mathrm{~V} / 3.3 \mathrm{~V} \text {; } \\
\& \text { Test Circuit 2 } \\
\& \mathrm{V}_{S}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text {, or } \mathrm{V}_{S}=\mathrm{V}_{D}=3.3 \mathrm{~V} \text {; } \\
\& \text { Te et Circuit 3 }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
DIGITAL INPUTS \\
Input High Voltage, \(\mathrm{V}_{\text {INH }}\) \\
Input Low Voltage, VINL \\
Input C urrent \\
\(\mathrm{I}_{\text {INL }}\) or \(\mathrm{I}_{\text {Inh }}\) \\
\(\mathrm{C}_{\text {IN }}\), Digital Input C apacitance
\end{tabular} \& \[
\begin{aligned}
\& 0.005 \\
\& 5
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 2.0 \\
\& 0.8 \\
\& \pm 0.1
\end{aligned}
\] \& \begin{tabular}{l}
\(V\) min \\
\(V\) max \\
\(\mu \mathrm{A}\) typ \\
\(\mu \mathrm{A}\) max \\
pF typ
\end{tabular} \& \(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}\) or \(\mathrm{V}_{\text {INH }}\) \\
\hline \begin{tabular}{l}
DYNAMIC CHARACTERISTICS \({ }^{3}\) \\
ADG819 \\
\(t_{0 N}\) \\
\(\mathrm{t}_{\text {OFF }}\) \\
Break-Before-M ake Time Delay, \(\mathrm{t}_{\text {ввм }}\) \\
AD G 820 \\
\(\mathrm{t}_{\mathrm{ON}}\) \\
\(\mathrm{t}_{\text {off }}\) \\
\(M\) ake-Before-Break Time Delay, \(\mathrm{t}_{\text {M }}\) B \\
Charge Injection \\
Off Isolation \\
Channel-to-Channel Crosstalk \\
Bandwidth -3 dB \\
\(\mathrm{C}_{\mathrm{S}}\) (OFF) \\
\(C_{D}, C_{S}(O N)\)
\end{tabular} \& \[
\begin{aligned}
\& 40 \\
\& 60 \\
\& 10 \\
\& 16 \\
\& 40 \\
\& \\
\& \\
\& 20 \\
\& 35 \\
\& 30 \\
\& 45 \\
\& 10 \\
\& 10 \\
\& \\
\& \\
\& -71 \\
\& \\
\& -72 \\
\& \\
\& 17 \\
\& 80 \\
\& 300
\end{aligned}
\] \& 65
18

40
50 \& 70
21
1
45
55

1 \& | ns typ ns max ns typ ns max ns typ ns min |
| :--- |
| ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ |
| M Hz typ pF typ pF typ | \&

\hline POWER REQUIREMENTS

$$
I_{D D}
$$ \& 0.001 \& 1.0 \& 2.0 \& $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max \& \[

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V} \\
& \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V}
\end{aligned}
$$
\]

\hline
\end{tabular}

NOTES

${ }^{1} \mathrm{~T}$ emperature range is as follows: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2} \mathrm{ON}$ resistance parameters tested with $\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$.
${ }^{3}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

ADG819/ADG820

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

($T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.)	
$V_{D D}$ to GND -0.3 V to +7 V Analog Inputs ${ }^{2}$$-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$	
Analog Inputs ${ }^{2}$	$\text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ ever Occurs First
Peak Current, S or D . 400 mA	
. (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle M ax)	
Continuous C urrent, S or D	200 mA
O perating T emperature R ange	
Industrial . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Automotive . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Storage T emperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Junction Temperature	
μ SOIC Package	
$\theta_{\text {JA }}$ Thermal Impedance . $206^{\circ} \mathrm{C} / \mathrm{W}$ $\theta_{\text {IC }}$ Thermal Impedance . $44^{\circ} \mathrm{C} / \mathrm{W}$	
SOT-23 Package (4-L ayer Board)	
$\theta_{\text {JA }}$ T hermal Impedance	$119{ }^{\circ} \mathrm{C} / \mathrm{W}$

M icroCSP Package	
$\theta_{\text {JA }}$ T hermal Imped	
Lead T emperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
IR Reflow, Peak T emperature (<20 sec)	$235{ }^{\circ} \mathrm{C}$
NOTES	
${ }^{1}$ Stresses above those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.	
${ }^{2}$ O vervoltages at IN, S, or D will be clamped by int limited to the maximum ratings given.	should be

Table I. Truth Table for the AD G819/AD G820

IN	Switch S1	Switch S2
0	ON	OFF
1	OFF	ON

PIN CONFIGURATIONS

TERMINOLOGY

$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \text { GND } \end{aligned}$	M ost Positive Power Supply Potential Ground (0 V) R eference
$I_{\text {D }}$	Positive Supply C urrent
S	Source T erminal. M ay be an input or output.
D	D rain T erminal. M ay be an input or output.
IN	Logic Control Input
$\mathrm{R}_{\text {ON }}$	Ohmic Resistance between D and S
$\Delta \mathrm{R}_{\text {ON }}$	ON Resistance M atch between Any T wo Channels, i.e., $\mathrm{R}_{\text {ON }} \mathrm{max}-\mathrm{R}_{\text {ON }} \mathrm{min}$
R FLAT(ON)	Flatness is defined as the difference between the maximum and minimum value of ON resistance as measured over the specified analog signal range.
$\mathrm{I}_{\text {S }}$ (OFF)	Source L eakage C urrent with the Switch OFF
$I_{D}, I_{S}(O N)$	C hannel Leakage Current with the Switch ON
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog Voltage on T erminals D, S
$V_{\text {INL }}$	M aximum Input Voltage for Logic "0"
$\mathrm{V}_{\text {INH }}$	M inimum Input Voltage for Logic "1"
$\mathrm{I}_{\text {INL }}\left(\mathrm{l}_{\text {INH }}\right)$	Input C urrent of the Digital Input
C_{s} (OFF)	OFF Switch Source C apacitance
$C_{\text {d }}, \mathrm{C}_{S}(\mathrm{ON})$	ON Switch Capacitance
t_{ON}	D elay between applying the digital control input and the output switching ON.
$\mathrm{t}_{\text {OFF }}$	D elay between applying the digital control input and the output switching OFF.
$\mathrm{t}_{\text {BBM }}$	OFF time or ON time measured between the 90% points of both switches when switching from one address state to another.
$t_{\text {M BB }}$	ON time measured between the 80% points of both switches when switching from one address state to another.
C harge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
C rosstalk	A measure of unwanted signal coupled through from one channel to another as a result of parasitic capacitance.
OFF Isolation	A measure of unwanted signal coupling through an OFF switch.
Bandwidth	Frequency at which the output is attenuated by -3 dB .
ON Response	Frequency Response of the ON Switch
Insertion L oss	L oss due to the ON Resistance of the Switch

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD G819/ ADG820 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADG819/ADG820-Typical Performance Characteristics

TPC 1. ON Resistance vs. $V_{D}\left(V_{S}\right)$

TPC 2. ON Resistance vs. $V_{D}\left(V_{S}\right)$

TPC 3. Leakage Currents vs. Temperatures

TPC 4. ON Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures

TPC 5. ON Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures

TPC 6. $t_{\text {oN }} / t_{\text {off }}$ Times vs. Temperature (ADG819)

TPC 7. Charge Injection vs. Source Voltage

TPC 8. OFF Isolation vs. Frequency

TPC 9. Crosstalk vs. Frequency

TPC 10. ON Response vs. Frequency

TPC 11. Logic Threshold vs. Supply Voltage

Test Circuit 1. ON Resistance

Test Circuit 2. OFF Leakage

Test Circuit 3. ON Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Break-Before-Make Time Delay, tBBM $^{(A D G 819 ~ O n l y) ~}$

Test Circuit 6. Make-Before-Break Time Delay, $t_{\text {MBB }}$ (ADG820 Only)

Test Circuit 7. Charge Injection

Test Circuit 8. OFF Isolation

Test Circuit 9. Bandwidth

Test Circuit 10. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

6-Lead Plastic Surface-Mount Package
 (RJ-6)
 Dimensions shown in inches and (mm)

Dimensions shown in inches and (mm)

2×3 Array for MicroCSP
(CB-6)
Dimensions shown in millimeters and (inches)

