FEATURES

44 V supply maximum rating $\pm 15 \mathrm{~V}$ analog signal range
Low Ron (60Ω)
Low leakage (0.5 nA)
Break before make switching
Low power dissipation
Available in a 16-lead SOIC package
Replaces DG201A, HI-201

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications
(AQEC standard)
Military temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Controlled manufacturing baseline
One assembly and test site
One fabrication site
Enhanced product change notification
Qualification data available on request

GENERAL DESCRIPTION

The ADG201A-EP is a monolithic CMOS device comprising four independently selectable switches. They are designed on an enhanced LC ${ }^{2}$ MOS process, which gives an increased signal handling capability of $\pm 15 \mathrm{~V}$. These switches also feature high switching speeds and low Ron.

The ADG201A-EP exhibits break before make switching action. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

Full details about this enhanced product are available in the ADG201A data sheet, which should be consulted in conjunction with this data sheet.

FUNCTIONAL BLOCK DIAGRAM

NOTES

1. SWITCHES SHOWN FOR A LOGIC1 INPUT. 嵩

Figure 1.

PRODUCT HIGHLIGHTS

1. Extended signal range of $\pm 15 \mathrm{~V}$.
2. Operates with 15 V single supply voltages.
3. Low leakage: 500 pA .

Table 1. Truth Table

INx	Switch Condition
0	On
1	Off

Rev. 0

ADG201A-EP

TABLE OF CONTENTS

\qquad
Enhanced Product Features 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 3
Absolute Maximum Ratings 4
ESD Caution. 4
Pin Configuration and Function Descriptions. 5
Test Circuits. 6
Outline Dimensions 7
Ordering Guide 7

REVISION HISTORY

2/11-Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$. All specifications $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) Ron vs. $\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$ Ron Drift Ron Match	$\begin{aligned} & \pm 15 \\ & 60 \\ & 90 \\ & 20 \\ & 0.5 \\ & 5 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & 145 \end{aligned}$	V Ω typ Ω max \% typ \%/ ${ }^{\circ} \mathrm{C}$ typ \% typ	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{s}} \leq+10 \mathrm{~V}, \mathrm{l}_{\mathrm{Ds}}=1 \mathrm{~mA}$; see Figure 3 $\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{l} \mathrm{ls}=1 \mathrm{~mA}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, ID, IS (On)	$\begin{aligned} & \pm 0.5 \\ & \pm 2.0 \\ & \pm 0.5 \\ & \pm 2.0 \\ & \pm 0.5 \\ & \pm 2.0 \end{aligned}$	$\begin{aligned} & \pm 100 \\ & \pm 100 \\ & \pm 200 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D}= \pm 14 \mathrm{~V}, V_{S}=\mp 14 \mathrm{~V} \text {; see Figure } 4 \\ & V_{D}= \pm 14 \mathrm{~V}, V_{S}=\mp 14 \mathrm{~V} \text {; see Figure } 4 \\ & V_{D}= \pm 14 \mathrm{~V} \text {; see Figure } 5 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current, Inl or $\mathrm{I}_{\mathrm{INH}}$		$\begin{aligned} & 2.4 \\ & 0.8 \\ & 1 \end{aligned}$	\vee min V max $\mu \mathrm{A}$ max	
DYNAMIC CHARACTERISTICS topen ton ${ }^{1}$ toff ${ }^{1}$ Off Isolation Channel-to-Channel Crosstalk C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{s}}$ (On) CIN Digital input Capacitance Qin Charge Injection	$\begin{aligned} & 30 \\ & 300 \\ & 250 \\ & 80 \\ & 80 \\ & 5 \\ & 5 \\ & 16 \\ & 5 \\ & 20 \\ & \hline \end{aligned}$		ns typ ns max ns max dB typ dB typ pF typ pF typ pF typ pF typ pC typ	See Figure 6 See Figure 6 See Figure 6 $V_{S}=10 \mathrm{~V} p-\mathrm{p}, \mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=75 \Omega$; see Figure 8 See Figure 9 $\mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text {; see Figure } 7$
POWER SUPPLY IDD Iss Power Dissipation	0.6 0.1	$\begin{aligned} & 2 \\ & 0.2 \\ & 33 \end{aligned}$	mA typ mA max mA typ mA max mW max	Digital inputs $=\mathrm{V}_{\text {INLL }}$ or $\mathrm{V}_{\text {INH }}$

[^0]
ADG201A-EP

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Rating
$V_{D D}$ to $V_{S S}$	44 V
$V_{D D}$ to GND	25 V
V $_{S S}$ to GND	-25 V
Analog Inputs ${ }^{1}$	$\mathrm{~V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs ${ }^{1}$	$\mathrm{~V}_{S S}-2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+2 \mathrm{~V}$ or 20 mA
	(whichever occurs first)
Pulsed Current, S or D	70 mA (pulsed at 1 ms,
	10% duty cycle maximum)
Continuous Current, S or D	30 mA
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation	
\quad Up to $+75^{\circ} \mathrm{C}$	470 mW
\quad Derates above $+75^{\circ} \mathrm{C}$ by	$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Lead Soldering	
Reflow, Peak Temperature	$260(+0 /-5)^{\circ} \mathrm{C}$
\quad Time at Peak Temperature	20 sec to 40 sec

[^1]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at a time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

ADG201A-EP		
IN1 1		16 IN2
		16 IN2
D1 2		15 D2
S1 3		14 S2
$\mathrm{V}_{\text {Ss }} 4$	TOP VIEW	13 VDD
GND 5	(Not to Scale)	12 NC
S4 6		11 S 3
D4 7		10 D3
IN4 8		9 IN3

Figure 2. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN1	Logic Control Input.
2	D1	Drain Terminal. Can be an input or output.
3	S1	Source Terminal. Can be an input or output.
4	VSS	Most Negative Power Supply. This pin is used in dual-supply applications only and should be tied to ground in single-supply applications.
5	GND	Ground (0V) Reference.
6	S4	Source Terminal. Can be an input or output.
7	D4	Drain Terminal. Can be an input or output.
8	IN4	Logic Control Input.
9	IN3	Logic Control Input.
10	D3	Drain Terminal. Can be an input or output.
11	S3	Source Terminal. Can be an input or output.
12	NC	No Connect. Not internally connected.
13	VDD	Most Positive Power Supply.
14	S2	Source Terminal. Can be an input or output.
15	D2	Drain Terminal. Can be an input or output.
16	IN2	Logic Control Input.

ADG201A-EP

TEST CIRCUITS

Figure 3. On Resistance

Figure 4. Off Leakage

Figure 5. On Leakage

Figure 6. Switching Times

Figure 7. Charge Injection

Figure 8. Off Isolation

Figure 9. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

Figure 10. 16-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R -16)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG201ASRZ-EP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Standard Small Outline Package [SOIC_N]	R-16
ADG201ASRZ-EP-RL7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package [SOIC_N]	R-16

[^2]
ADG201A-EP

NOTES

[^0]: ${ }^{1}$ Sample tested at $25^{\circ} \mathrm{C}$ to ensure compliance.

[^1]: ${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

[^2]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

