Enhanced Product

FEATURES

1 pC charge injection
$\pm 0.1 \mathrm{nA}$ maximum at $25^{\circ} \mathrm{C}$ leakage currents
85Ω on resistance
Rail-to-rail switching operation
Fast switching times
16-lead TSSOP
Typical power consumption: $\leq 11 \mathrm{nW}$
TTL-/CMOS-compatible inputs
V_{ss} to V_{DD} analog signal range
$\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ dual supply operation
2.7 V to 5.5 V single-supply operation

Fully specified at $\pm 5 \mathrm{~V}, 3 \mathrm{~V}$, and 5 V

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
Military temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Controlled manufacturing baseline
1 assembly site
1 test site
1 fabrication site
Enhanced product change notification
Qualification data available on request

APPLICATIONS

Automatic test equipment Data acquisition systems Battery-powered systems

Communications systems

Sample-and-hold systems
Audio signal routing
Relay replacement
Avionics

GENERAL DESCRIPTION

The ADG613-EP is a monolithic CMOS device containing four independently selectable switches. This switch offers ultralow charge injection of 1 pC over the full input signal range and typical leakage currents of 0.01 nA at $25^{\circ} \mathrm{C}$.

The device is fully specified for $\pm 5 \mathrm{~V}, 5 \mathrm{~V}$, and 3 V supplies. It contains four independent single-pole, single-throw (SPST) switches. The ADG613-EP contains two switches with digital control logic that turns on with logic low and two switches in which the logic is inverted.
Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

ADG613-EP exhibits break-before-make switching action.
The ADG613-EP is available in a small, 16-lead TSSOP package.
The ADG613-EP is also a TTL-compatible device.
Additional application and technical information can be found in the ADG613 data sheet.

PRODUCT HIGHLIGHTS

1. Ultralow charge injection (1 pC typically).
2. Dual $\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ or single 2.7 V to 5.5 V operation.
3. Temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
4. Small, 16-lead TSSOP.

Rev. A

[^0]
ADG613-EP

TABLE OF CONTENTS

Features 1
Enhanced Product Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications. 3
Dual-Supply Operation 3
REVISION HISTORY
10/2016-Rev. 0 to Rev. A
Changes to Features Section and Enhanced ProductFeatures Section 1
Single-Supply Operation. 4
Absolute Maximum Ratings. 6
ESD Caution 6
Pin Configuration and Function Descriptions 7
Typical Performance Characteristics 8
Test Circuits 10
Outline Dimensions 12
Ordering Guide 12

6/2016-Revision 0: Initial Revision

SPECIFICATIONS

DUAL-SUPPLY OPERATION

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. V_{S} is the source voltage. V_{D} is the drain voltage.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, $\Delta \mathrm{R}_{\text {on }}$ On-Resistance Flatness, $\mathrm{R}_{\text {flation }}$	$\begin{aligned} & 85 \\ & 115 \\ & 2 \\ & 4 \\ & 25 \\ & 40 \end{aligned}$	$\begin{aligned} & V_{S S} \text { to } V_{D D} \\ & 160 \\ & 6.5 \\ & 60 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \text {; see Figure } 14 \\ & \mathrm{~V}_{\mathrm{s}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \text {; see Figure } 14 \\ & \mathrm{~V}_{\mathrm{s}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, $I_{\text {s(off) }}$ Drain Off Leakage, $I_{\text {D(OFF) }}$ Channel On Leakage, $I_{\text {D(ON) }} I_{I_{\text {ION }}}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	± 2 ± 2 ± 6	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text {; see Figure } 16 \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text {; see Figure } 16 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathbb{N H}}$ Input Low Voltage, $\mathrm{V}_{\mathbb{N L}}$ Input Current, $I_{\mathbb{N L}}$ or $I_{\mathbb{N H}}$ Digital Input Capacitance, $\mathrm{C}_{\mathbb{N}}$	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 0.1 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & V_{\mathbb{N}}=V_{\mathbb{N L}} \text { or } V_{\mathbb{N H}} \\ & V_{\mathbb{N}}=V_{\mathbb{N L}} \text { or } V_{\mathbb{N}} \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ Delay from Digital Control Input and Output Switching On, ton Delay from Digital Control Input and Output Switching Off, $\mathrm{t}_{\mathrm{ofF}}$ Break-Before-Make Time Delay, t $_{\text {BM }}$ Charge Injection Off Isolation Channel to Channel Crosstalk -3 dB Bandwidth Off Switch Source Capacitance, $C_{\text {s(off) }}$ Off Switch Drain Capacitance, $\mathrm{C}_{\text {D(OFF) }}$ On Switch Capacitance, $\mathrm{C}_{\mathrm{D}(\mathrm{ON})}, \mathrm{C}_{\mathrm{SION})}$	45 65 25 40 15 -0.5 -65 -90 680 5 5 5	90 50 10	nstyp ns max nstyp ns max nstyp ns min pCtyp dB typ dB typ MHz typ pF typ pF typ pF typ	
POWER REQUIREMENTS Positive Supply Current, ID Negative Supply Current, Iss $V_{D D} / V_{S S}$ Power Consumption	$\begin{aligned} & 0.001 \\ & 0.001 \\ & \\ & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \pm 2.7 \\ & \pm 5.5 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $V_{\text {min }}$ \checkmark max nW typ $\mu \mathrm{W}$ max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

[^1]
SINGLE-SUPPLY OPERATION

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. V_{S} is the source voltage. V_{D} is the drain voltage.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron	$\begin{aligned} & 210 \\ & 290 \\ & 3 \\ & 10 \end{aligned}$	0 to $V_{D D}$ 380 13	V Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \text {; see Figure } 14 \\ & \mathrm{~V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \text {; see Figure } 14 \\ & \mathrm{~V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, $I_{\text {S(OFF) }}$ Drain Off Leakage, $I_{\text {D(Off) }}$ Channel On Leakage, $I_{\mathrm{D}_{(O N)},} I_{\mathrm{I}_{(O N)}}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	± 2 ± 2 ± 6	$\begin{aligned} & \text { nA typ } \\ & \text { nA max } \\ & \text { nA typ } \\ & \text { nA max } \\ & \text { nA typ } \\ & \text { nA max } \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} \text { or } 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} \text { or } 1 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} \text { or } 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} \text { or } 1 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} \text { or } 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} \text { or } 1 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} \text { or } 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} \text { or } 1 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \text {; see Figure } 16 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \text {; see Figure } 16 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current, I_{IL} or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$	$\begin{gathered} 2.4 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min \checkmark max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & V_{\text {IN }}=V_{\text {INL or }} V_{\text {INH }} \\ & V_{\text {IN }}=V_{\text {INLL or }} V_{\text {INH }} \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Break-Before-MakeTime Delay, $\mathrm{t}_{\text {BB }}$ Charge Injection Off Isolation Channel to Channel Crosstalk -3 dB Bandwidth $\mathrm{C}_{\text {s(OFF) }}$ $C_{\text {D(off) }}$ $\mathrm{C}_{\mathrm{D}(\mathrm{ON}),} \mathrm{C}_{\mathrm{S}(\mathrm{ON})}$	$\begin{aligned} & 70 \\ & 100 \\ & 25 \\ & 40 \\ & 25 \\ & \\ & 1 \\ & -62 \\ & -90 \\ & 680 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 150 \\ & 50 \\ & 10 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	
POWER REQUIREMENTS IDD $V_{D D}$ Power Consumption	0.001 5.5 5.5	$\begin{aligned} & 1.0 \\ & 2.7 \\ & 5.5 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V min \checkmark max nW typ $\mu \mathrm{W}$ max	$V_{D D}=5.5 \mathrm{~V}$ Digital inputs $=0 \mathrm{~V}$ or 5.5 V Digital inputs $=0 \mathrm{~V}$ or 5.5 V

[^2]$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. V_{S} is the source voltage. V_{D} is the drain voltage.
Table 3.

Parameter	$25^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron	380	$\begin{aligned} & 0 \text { to } V_{D D} \\ & 460 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { V } \\ & \Omega \text { typ } \end{aligned}$	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$; see Figure 14
LEAKAGE CURRENTS Source Off Leakage, I I(OFF) Drain Off Leakage, $I_{\text {D(OFF) }}$ Channel On Leakage, $I_{\mathrm{D}_{(O N)}} \mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	± 2 ± 2 ± 6	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} \text { or } 1 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} \text { or } 1 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} \text { or } 1 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} \text { or } 1 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V} \text {; see Figure } 16 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V} \text {; see Figure } 16 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current, $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, C_{I}	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$	$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min \checkmark max μA typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL or }} \mathrm{V}_{\text {INH }} \\ & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL or }} \mathrm{V}_{\text {INH }} \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Break-Before-Make Time Delay, $\mathrm{t}_{\text {BB }}$ Charge Injection Off Isolation Channel to Channel Crosstalk -3 dB Bandwidth $\mathrm{C}_{\text {s(OfF) }}$ $C_{\text {D(off) }}$ $\mathrm{C}_{\mathrm{D}(\mathrm{ON}),} \mathrm{C}_{\mathrm{S}(\mathrm{ON})}$	$\begin{aligned} & 130 \\ & 185 \\ & 40 \\ & 55 \\ & 50 \\ & \\ & 1.5 \\ & -62 \\ & -90 \\ & 680 \\ & 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 260 \\ & 65 \\ & 10 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	
POWER REQUIREMENTS IDD $V_{D D}$ Power Consumption	0.001 3.3 3.3	$\begin{aligned} & 1.0 \\ & 2.7 \\ & 5.5 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V min V max nW typ $\mu \mathrm{W}$ max	$\begin{aligned} & \mathrm{V} \mathrm{VD}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$

[^3]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted
Table 4.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{S S}{ }^{1}$	13 V
$V_{\text {DD }}$ to GND ${ }^{1}$	-0.3 V to +6.5 V
$\mathrm{V}_{\text {Ss }}$ to GND ${ }^{1}$	+0.3 V to -6.5 V
Analog Inputs ${ }^{2}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs ${ }^{2}$	GND - 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, Sx or Dx	20 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
Continuous Current, Sx or Dx	10 mA
3 V Operation, $85^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	7.5 mA
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$ Thermal Impedance	
16-Lead TSSOP	$150.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Soldering	
Lead Temperature, Soldering (10 sec)	$300{ }^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature (<20 sec)	$220^{\circ} \mathrm{C}$
Pb-Free Soldering	
Reflow, Peak Temperature	260 (+0/-5) ${ }^{\circ} \mathrm{C}$
Time at Peak Temperature	20 sec to 40 sec

[^4]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.
Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NIC = NOT INTERNALLY CONNECTED $\stackrel{\text { 学 }}{ }$
Figure 2. Pin Configuration
Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN1	Switch 1 Digital Control Input.
2	D1	Drain Terminal of Switch 1. This pin can be an input or output.
3	S1	Source Terminal of Switch 1. This pin can be an input or output.
4	VSS	Most Negative Power Supply Terminal. Tie this pin to GND when using the device with single-supply voltages.
5	GND	Ground (0 V) Reference.
6	S4	Source Terminal of Switch 4. This pin can be an input or output.
7	D4	Drain Terminal of Switch 4. This pin can be an input or output.
8	IN4	Switch 4 Digital Control Input.
9	IN3	Switch 3 Digital Control Input.
10	S3	Drain Terminal of Switch 3. This pin can be an input or output.
11	SIC	Source Terminal of Switch 3. This pin can be an input or output.
12	Not Internally Connected.	
13	S2	Sost Positive Power Supply Terminal.
14	Source Terminal of Switch 2. This pin can be an input or output.	
15	IN2	Srain Terminal of Switch 2. This pin can be an input or output.
16		

Table 6. Truth Table

Logic	S1 and S4	S2 and S3
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. V_{D}, V_{S}; Dual Supplies

Figure 4. On Resistance vs. V_{D}, V_{S}; Single Supply

Figure 5. On Resistance vs. V_{D}, V_{S} for Various Temperatures, Dual Supplies

Figure 6. On Resistance vs. V_{D}, V_{S} for Various Temperatures, Single Supply

Figure 7. Leakage Current vs. Temperature, Dual Supplies

Figure 8. Leakage Current vs. Temperature, Single Supply

Figure 9. Charge Injection $\left(Q_{\mathbb{N}_{J}}\right)$ vs. Source Voltage (V_{s})

Figure 10. $t_{\text {oN }} / t_{\text {off }}$ Times vs. Temperature

Figure 11. On Response vs. Frequency

Figure 12. Off Isolation vs. Frequency

Figure 13. Crosstalk vs. Frequency

TEST CIRCUITS

Figure 15. Off Leakage

Figure 16. On Leakage

Figure 17. Switching Times

Figure 18. Break-Before-Make Time Delay

Figure 19. Charge Injection

Figure 20. Off Isolation

Figure 22. Bandwidth

Figure 21. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

Figure 23. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG613SRUZ-EP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG613SRUZ-EP-RL7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package [TSSOP]	$R \mathrm{RU}-16$

[^5]
[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
 Tel: 781.329 .4700
 Technica I Support ©2016 Analog Devices, Inc. All rights reserved. www.analog.com

[^1]: ${ }^{1}$ Guaranteed by design; not subject to production test

[^2]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^3]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^4]: ${ }^{1}$ Tested at $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
 ${ }^{2}$ Overvoltages at INx, Sx, or Dx are clamped by internal diodes. Limit the current to the maximum ratings given. Tested at $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

[^5]: ${ }^{1} Z=$ RoHS Compliant Part.

