1. This specification shall be applied to the ESD Protection Device.

LXES11DAA2-135
LXES21DAA4-136
LXES11DAA2-137
LXES21DAA4-138
LXES21DAA4-140
LXES18DAA4-167
LXESONDAA2-172
LXES18DAA4-182
LXESONDAA2-183
LXES18DAA4-184
LXESONDAA2-185
2. Part Number Configuration

| $\frac{\text { LXES }}{(1)}$ | $\frac{11}{(2)}$ | $\frac{D}{3}$ | $\frac{A A}{(4)}$ | $\frac{2}{5}$ |
| :--- | :--- | :--- | :--- | :--- |$-\frac{135}{(6)}$

(1) Product ID (LXES = ESD Protection device)
(2) Dimension Code

	Unit : mm
Code	Dimension
11	1.25×1.0
21	2.0×1.25
0 N	0.87×0.67
18	1.6×0.8

(3) Type (D : Common mode ESD filter)
(4) Control Code
(5) Number of channel
(6) Serial Number
※RoHS Compliant
Halogen free
T/R only.

3.CONSTRUCTION, DIMENSIONS

3-1 DIMENSIONS

LXES11D series

Top View

Side View 2

Unit : mm

Mark	Dimension	Mark	Dimension
L	$1.25+/-0.1$	a2	$0.25+/-0.15$
W	$1.0+/-0.1$	b1	$0.2+/-0.1$
T	$0.75+/-0.1$	b2	$0.2+/-0.15$
a1	$0.3+/-0.1$	p	$0.55+/-0.05$

LXES21Dseries

Side View 1

Unit : mm

Mark	Dimension
L	$2.0+/-0.1$
W	$1.25+/-0.1$
T	$0.80+0.1 /-0.05$
a 1	$0.25+/-0.1$

Mark	Dimension
a 2	$0.2+/-0.15$
b 1	$0.25+/-0.1$
b 2	$0.2+/-0.15$
p	$0.5+/-0.05$

LXESONDseries

Top View
(3)

Side View 1

Side View 2

Bottom View

Unit : mm

Mark	Dimension			
L	0.87 ± 0.05			
W	0.67 ± 0.05			
T	0.47 ± 0.05	\quad	Mark	Dimension
:---:	:---:			
	b			
	0.20 ± 0.05			

LXES18Dseries

Top View

Side View 1

Side View 2
Bottom View

Mark	Dimension
L	$1.6+/-0.1$
W	$0.8+/-0.1$
T	$0.5+/-0.05$
a 1	$0.2+/-0.1$

	Unit : mm
Mark	Dimension
a2	$0.15+/-0.1$
b1	$0.2+/-0.1$
b2	$0.15+/-0.1$
p	$0.4+/-0.05$

3-2 Circuit Diagram

LXES11D series / LXES0ND series

LXES21D series/ LXES18D series
(9) (8)
(7) (6)

TERMINAL CONFIGURATION This device is bi-directional.

3-3 Product Weight

P/N	Weight [mg]
LXES11D series	3.0
LXES21D series	7.1
LXESOND series	1.0
LXES18D series	2.3

4.CHARACTERISTICS

4-1 Ratings

Parameter	Rating	Unit
Rated Voltage	5	V
Rated Current	60	mA
Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$

4-2 Electrical Characteristics ($\mathrm{T}=25^{\circ} \mathrm{C}$)

P/N	Parameter	Conditions	MIN	TYP	MAX	Units
LXES11DAA2-135 LXES21DAA4-136	Common mode impedance	$@ 100 \mathrm{MHz}$		60		Ω
	DC Resistance	Capacitance ESD per IEC 61000-4-2 (Air) ESD per IEC 61000-4-2 (Contact)			3	

P/N	Parameter	Conditions	MIN	TYP	MAX	Units
LXES11DAA2-137 LXES21DAA4-138	Common mode impedance	$@ 100 \mathrm{MHz}$		35		Ω
	DC Resistance			2		Ω
	Capacitance ESD per IEC 61000-4-2 (Air)		1 MHz, Vbias=0V		0.4	
	ESD per IEC 61000-4-2 (Contact)		-15		15	kV

P/N	Parameter	Conditions	MIN	TYP	MAX	Units
LXES21DAA4-140	Common mode impedance	$@ 100 \mathrm{MHz}$		90		Ω
	DC Resistance			4		Ω
	Capacitance	1 MHz, Vbias=0V		0.4		pF
	ESD per IEC 61000-4-2 (Air)		-15		15	kV
	ESD per IEC 61000-4-2 (Contact)		-15		15	kV

P/N	Parameter	Conditions	MIN	TYP	MAX	Units
LXES18DAA4-167	Common mode impedance	$@ 100 \mathrm{MHz}$		90		Ω
	DC Resistance			5		Ω
	Capacitance	1 MHz, Vbias=0V		0.4		pF
	ESD per IEC 61000-4-2 (Air)		-15		15	kV
	ESD per IEC 61000-4-2 (Contact)		-15		15	kV

MURATA MFG. CO., LTD.

P/N	Parameter	Conditions	MIN	TYP	MAX	Units
LXESONDAA2-172	Common mode impedance	$@ 100 \mathrm{MHz}$		75		Ω
	DC Resistance			5		Ω
	Capacitance	1 MHz, Vbias=0V		0.4		pF
	ESD per IEC 61000-4-2 (Air)		-15		15	kV
	ESD per IEC 61000-4-2 (Contact)		-15		15	kV

P/N	Parameter	Conditions	MIN	TYP	MAX	Units
LXES18DAA4-182 LXES0NDAA2-183	Common mode impedance	$@ 100 \mathrm{MHz}$		25		Ω
	DC Resistance			4		Ω
	Capacitance ESD per IEC 61000-4-2 (Air)		-15		15	kV
	ESD per IEC 61000-4-2 (Contact)		-15		15	kV

P/N	Parameter	Conditions	MIN	TYP	MAX	Units
LXES18DAA4-184 LXES0NDAA2-185	Common mode impedance	$@ 100 \mathrm{MHz}$		50		Ω
	DC Resistance			5		Ω
	Capacitance	ESD per IEC 61000-4-2 (Air)		-15		15
	kV					
	ESD per IEC 61000-4-2 (Contact)		-15		15	kV

MURATA MFG. CO., LTD.

4-3 Typical Characteristic

LXES11DAA2-135

ESD Waveform (IEC61000-4-2:8kV Contact)
LXES21DAA4-136

ESD Waveform (IEC61000-4-2:8kV Contact)

LXES11DAA2-137

MURATA MFG. CO., LTD.

ESD Waveform (IEC61000-4-2:8kV Contact)
LXES21DAA4-140

ESD Waveform (IEC61000-4-2:8kV Contact)

MURATA MFG. CO., LTD.

ESD Waveform (IEC61000-4-2: 8kV Contact)

LXESONDAA2-172

ESD Waveform (IEC61000-4-2:8kV Contact)

LXES18DAA4-182

ESD Waveform (IEC61000-4-2:8kV Contact)

MURATA MFG. CO., LTD.

ESD Waveform (IEC61000-4-2:8kV Contact)
LXES18DAA4-184

ESD Waveform (IEC61000-4-2:8kV Contact)
LXESONDAA2-185

ESD Waveform (IEC61000-4-2:8kV Contact)

MURATA MFG. CO., LTD.

LXES11DAA2-135

LXES21DAA4-136

LXES11DAA2-137

MURATA MFG. CO., LTD.

LXES21DAA4-140

LXES18DAA4-167

MURATA MFG. CO., LTD.

LXESONDAA2-172

LXES18DAA4-182

MURATA MFG. CO., LTD.

LXES18DAA4-184

LXESONDAA2-185

MURATA MFG. CO., LTD.

Signal Integrity HDMI 1080P 48bit
Oohm

Signal Integrity USB2.0
Oohm

Signal Integrity USB3.0
Oohm

w/t LXES11DAA2-135

w/t LXES11DAA2-135

w/t LXES11DAA2-135

MURATA MFG. CO., LTD.

Signal Integrity HDMI 1080P 48bit 0ohm

Signal Integrity USB2.0 Oohm

Signal Integrity USB3.0
0ohm

w/t LXES21DAA4-136

w/t LXES21DAA4-136

w/t LXES21DAA4-136

MURATA MFG. CO., LTD.

Signal Integrity HDMI 1080P 48bit Oohm

Signal Integrity USB2.0 Oohm

Signal Integrity USB3.0 0ohm

w/t LXES11DAA2-137

w/t LXES11DAA2-137

w/t LXES11DAA2-137

MURATA MFG. CO., LTD.

Signal Integrity HDMI 1080P 48bit Oohm

Signal Integrity USB2.0 0ohm

Signal Integrity USB3.0 Oohm

w/t LXES21DAA4-138

w/t LXES21DAA4-138

w/t LXES21DAA4-138

MURATA MFG. CO., LTD.

Signal Integrity HDMI 1080P 48bit Oohm

Signal Integrity USB2.0
Oohm

Signal Integrity USB3.0 0ohm

w/t LXES21DAA4-140

w/t LXES21DAA4-140

w/t LXES21DAA4-140

MURATA MFG. CO., LTD.

5.Reliability Test

No.	Items		Specifications	Test Methods	Number	Result (Fail)
1	Vibration Resistance		No severe damages Satisfy dimension specifications	Solder specimens on the testing jig (glass fluorine boards) shown in appended Fig. 1 by a Pb free solder. The soldering shall be done either by iron or reflow and be conducted with care so that the soldering is uniform and free of defect such as by heat shock.	22	$\begin{gathered} \text { G } \\ (0) \end{gathered}$
2	Shock			Solder specimens on the testing jig (glass fluorine boards) shown in appended Fig. 1 by a Pb free solder. The soldering shall be done either by iron or reflow and be conducted with care so that the soldering is uniform and free of defect such as by heat shock	22	$\begin{gathered} \text { G } \\ (0) \end{gathered}$
3	Deflection			Solder specimens on the testing jig (glass epoxy boards) shown in appended Fig. 2 by a Pb free solder. The soldering shall be done either by iron or reflow and be conducted with care so that the soldering is uniform and free of defect such as by heat shock. No damage with 1.6 mm deflection	22	$\begin{gathered} \mathrm{G} \\ (0) \end{gathered}$
4	Soldering str (Push Streng		5N Minimum	Solder specimens onto test jig shown below. Apply pushing force at $0.5 \mathrm{~mm} / \mathrm{s}$ until electrode pads are peeled off or ceramics are broken. Pushing force is applied to longitudinal direction.	22	$\begin{gathered} \text { G } \\ (0) \end{gathered}$
5	Solderability	Termination	95\% of the terminations is to be soldered evenly and continuously.	Immerse specimens first an ethanol solution of rosin, then in a Pb free solder solution for $3 \pm 0.5 \mathrm{sec}$. at $245 \pm 5^{\circ} \mathrm{C}$. Preheat : $100-120^{\circ} \mathrm{C}, 60 \mathrm{sec}$. Solder Paste: Sn-3.0Ag-0.5Cu Flux : Solution of ethanol and rosin (25 \% rosin in weight proportion)	22	$\begin{gathered} \text { G } \\ (0) \end{gathered}$
6	Resistance to Soldering Heat (Reflow)	Appearance Electrical specifications	No severe damages Satisfy specifications listed in paragraph 42 over operational temperature range	Preheat Temperature $: 150-200{ }^{\circ} \mathrm{C}$ Preheat Period $: 120+/-60 \mathrm{~s}$ High Temperature $: 217^{\circ} \mathrm{C}$ High Temp. Period $: 105+/-45 \mathrm{~s}$ Peak Temperature $: 260+0 /-5^{\circ} \mathrm{C}$ Specimens are soldered twice with the above condition, and then kept in room condition for 24 h before measurements.	22	$\begin{gathered} \text { G } \\ (0) \end{gathered}$

p21/35

No.	Items		Specifications	Test Methods			Number	Result (Fail)
7	High Temp. Exposure	Appeara nce	No severe damages	Temperature $: 85+2 /-0^{\circ} \mathrm{C}$Period $: 1000+48 /-0 \mathrm{~h}$Room Condition $: 2 \sim 24 \mathrm{~h}$			22	$\begin{aligned} & \text { G } \\ & (0) \end{aligned}$
8	Temperature Cycle	Electrical Specifica tions	Satisfy specifications listed in paragraph 4-2 over operational temperature range	Set the specimens to the supporting jig in the same manner and under the same conditions as Fig. 1 and conduct the 100 cycles according to the temperatures and time shown in the following table. Set it for 2 to 24 h at room temperature, then measure.			22	$\begin{aligned} & \mathrm{G} \\ & (0) \end{aligned}$
				Step	Temp(${ }^{\circ} \mathrm{C}$)	Time(min)		
				1	Min. Operating Temp.+0/-3	30 ± 3		
				2	Max. Operating Temp.+3/-0	30 ± 3		
9	Humidity (Steady State)			Tempe Humid Period Room	$\begin{aligned} & \text { ture: } 85 \pm 2^{\circ} \mathrm{O} \\ & : 80 \sim 90 \% R \\ & 000+48 /-0 \mathrm{~h} \\ & \text { ondition: } 2 \end{aligned}$	$24 \mathrm{~h}$	22	$\begin{aligned} & \text { G } \\ & (0) \end{aligned}$
10	Low Temp. Exposure			Tempe Period Room	$\begin{aligned} & \text { ture }:-40 \pm 2^{\circ} \\ & 000+48 /-0 h \\ & \text { ondition:2 } \end{aligned}$		22	$\begin{aligned} & \text { G } \\ & (0) \end{aligned}$

MURATA MFG. CO., LTD.

Fig. 1
Reference Land Pattern
LXES11D series

Mark	Dimension
a	0.6
b	1.4
c	0.2
d	0.75

	Unit : mm
Mark	Dimension
e	1.75
f	0.3
g	0.25

Notes: this land layout is for reference purpose only.
LXES21D series

Mark	Dimension
a	0.5
b	1.5
c	0.25
d	0.25

Unit : mm	
Mark	Dimension
e	0.5
f	0.25
g	0.75

Notes: this land layout is for reference purpose only.

		Unit : mm	
Mark	Dimension	Mark	Dimension
a	0.2	d	0.39
b	0.4	e	0.095
c	0.265	f	0.17

Notes: this land layout is for reference purpose only.

LXES18D series

		Unit : mm	
Mark	Dimension	Mark	Dimension
a	0.35	e	0.47
b	1.3	f	0.15
c	0.2	g	0.48
d	0.2		

Notes : this land layout is for reference purpose only.
MURATA MFG. CO., LTD.

Fig. 2
Testing board

Mounted situation

Test method
(Unit : mm)

MURATA MFG. CO., LTD.
6.Tape and Reel Packing
(1) LXES11D series

Dimensions of Tape

Unit: mm

Mark	Dimension
L	(1.40)
W	(1.20)
T	1.03 max
a	$2.00+/-0.05$
b	$4.00+/-0.1$

Mark	Dimension
c	$4.00+/-0.1$
d	$3.50+/-0.05$
e	$1.75+/-0.10$
f	$8.00+/-0.2$
g	$\phi 1.55+/-0.05$

(2) LXES21D series

Dimensions of Tape

(3) LXESOND series

Dimensions of Tape

Unit : mm

Mark	Dimension
L	(1.0)
W	(0.8)
T	0.64 max
a	$2.00+/-0.05$
b	$2.00+/-0.1$

Mark	Dimension
c	$4.00+/-0.1$
d	$3.50+/-0.05$
e	$1.75+/-0.10$
f	$8.00+/-0.10$
g	$\varphi 1.55+/-0.05$

(4) LXES18D series

Dimensions of Tape

Unit : mm

Mark	Dimension
L	(1.8)
W	(1.0)
T	$0.64 \max$
a	$4.00+/-0.1$
b	$4.00+/-0.1$

Mark	Dimension
c	$2.00+/-0.05$
d	$1.75+/-0.1$
e	$3.50+/-0.05$
f	8.00
g	$\phi 1.50$

(3) Dimensions of Reel

Symbol	a	b	c	d	e
Dimension	$2.0+/-0.5$	$\varphi 13.0+/-0.2$	$9.0+1.0 /-0$	$\varphi 60+1.0 /-$	$\varphi 180+0 /-$
0	1.5				

(4) Packaging

P/N	pcs / reel
LXES11D series	3,000
LXES21D series	3,000
LXESOND series	10,000
LXES18D series	4,000

(5) Taping Diagrams

Marking Direction
LXES11D series

LXES21D series

MURATA MFG. CO., LTD.

LXESOND series

LXES18D series

(6) Leader and Tail tape

Tail tape (No components) Components No components

Feeding direction
(7) The tape for chips are wound clockwise, the feeding holes to the right side as the tape is pulled toward the user.
(8) Material : Base tape
...... Plastic(LXES11D series/ LXES21D series)
...... Paper(LXESOND series/ LXES18D series)
Reel
Plastic
Base tape, Reel and Top tape have an anti-ESD function.
(9) Peeling of force : $0.1 \sim 1.0 \mathrm{~N}$ in the direction of peeling as shown below.

1. Storage Conditions:

To avoid damaging the solderability of the external electrodes, be sure to observe the following points.

- Store products where the ambient temperature is 15 to $35^{\circ} \mathrm{C}$ and humidity 45 to $75 \% \mathrm{RH}$. (Packing materials, In particular, may be deformed at the temperature over $40^{\circ} \mathrm{C}$.).
- Store products in non corrosive gas ($\mathrm{Cl}_{2}, \mathrm{NH}_{3}, \mathrm{SO}_{2}, \mathrm{No}_{\mathrm{x}}$, etc.).
- Stored products should be used within 6 months of receipt. Solderability should be verified if this period is exceeded.

This product is applicable to MSL1 (Based on IPC/JEDEC J-STD-020)

2. Handling Conditions:

Be careful in handling or transporting products because excessive stress or mechanical shock may break products due to the nature of ceramics structure.

Handle with care if products may have cracks or damages on their terminals, the characteristics of products may change. Do not touch products with bear hands that may result in poor solderability.

3. Standard PCB Design (Land Pattern and Dimensions):

All the ground terminals should be connected to the ground patterns. Furthermore, the ground pattern should be provided between IN and OUT terminals. Please refer to the specifications for the standard land dimensions.

The recommended land pattern and dimensions is as Murata's standard. The characteristics of products may vary depending on the pattern drawing method, grounding method, land dimensions, land forming method of the NC terminals and the PCB material and thickness. Therefore, be sure to verify the characteristics in the actual set. When using non-standard lands, contact Murata beforehand.

4. Notice for Chip Placer:

When placing products on the PCB, products may be stressed and broken by uneven forces from a worn-out chucking locating claw or a suction nozzle. To prevent products from damages, be sure to follow the specifications for the maintenance of the chip placer being used. For the positioning of products on the PCB, be aware that mechanical chucking may damage products.

5. Soldering Conditions:

Carefully perform preheating so that the temperature difference ($\Delta \mathrm{T}$) between the solder and products surface should be in the following range. When products are immersed in solvent after mounting, pay special attention to maintain the temperature difference within $100^{\circ} \mathrm{C}$. Soldering must be carried out by the above mentioned conditions to prevent products from damage. Contact Murata before use if concerning other soldering conditions.

Soldering method	Temperature
Soldering iron method	$\square \mathrm{T}<=130^{\circ} \mathrm{C}$
Reflow method	

- Soldering iron method conditions are indicated below.

Kind of iron Item	Ceramics heater
Soldering iron wattage	$<=18 \mathrm{~W}$
Temperature of iron-tip	$<=350^{\circ} \mathrm{C}$
Iron contact time	within 3 sec

- Diameter of iron-tip : $\$ 3.0 \mathrm{~mm}$ max.
- Do not allow the iron-tip to directly touch the ceramic element.

Use rosin type flux or weakly active flux with a chlorine content of $0.2 \mathrm{wt} \%$ or less.

MURATA MFG. CO., LTD.

Amount of Solder Paste:

- Ensure that solder is applied smoothly to a minimum height of 0.2 to 0.5 mm at the end surface of the external electrodes. If too much or little solder is applied, there is high possibility that the mechanical strength will be insufficient, creating the variation of characteristics.

Amount of solder paste

<Unacceptable>
Chassis

Lead wire of component mounted later

<lmprovements by land division >

MURATA MFG. CO., LTD.

6. Cleaning Conditions:

Any cleaning is not permitted.

7. Operational Environment Conditions:

Products are designed to work for electronic products under normal environmental conditions (ambient temperature, humidity and pressure). Therefore, products have no problems to be used under the similar conditions to the above-mentioned. However, if products are used under the following circumstances, it may damage products and leakage of electricity and abnormal temperature may occur.

- In an atmosphere containing corrosive gas ($\mathrm{Cl}_{2}, \mathrm{NH}_{3}, \mathrm{SO}_{\mathrm{x}}, \mathrm{NO}_{\mathrm{x}}$ etc.).
- In an atmosphere containing combustible and volatile gases.
- In a dusty environment.
- Direct sunlight
- Water splashing place.
- Humid place where water condenses.
- In a freezing environment.

If there are possibilities for products to be used under the preceding clause, consult with Murata before actual use.

If product malfunctions may result in serious damage, including that to human life, sufficient fail-safe measures must be taken, including the following:
(1) Installation of protection circuits or other protective device to improve system safety
(2) Installation of redundant circuits in the case of single-circuit failure

8. Input Current and Voltage Capacity:

Products shall be used in the input current and voltage capacity as specified in this specification.
Inform Murata beforehand, in case that the components are used beyond such input current and voltage capacity range.

9. Limitation of Applications:

The products are designed and produced for application in ordinary electronic equipment
(AV equipment, OA equipment, telecommunication, etc). If the products are to be used in devices requiring extremely high reliability following the application listed below, you should consult with the Murata staff in advance.

- Aircraft equipment.
- Aerospace equipment
- Undersea equipment.
- Power plant control equipment.
- Medical equipment.
- Transportation equipment (vehicles, trains, ships, etc.).
- Traffic signal equipment.
- Disaster prevention / crime prevention equipment.
- Data-procession equipment.
- Application which malfunction or operational error may endanger human life and property of assets.
- Application which related to occurrence the serious damage
- Application of similar complexity and/ or reliability requirements to the applications listed in the above.

MURATA MFG. CO., LTD.

Note:

Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.

Product specifications are subject to change or our products in it may be discontinued without advance notice.

This catalog is for reference only and not an official product specification document, therefore, please review and approve our official product specification before ordering this product.

Note:
This catalog is for reference only and not an official product specification document, therefore, please review and approve our official product specification before ordering this product.

MURATA MFG. CO., LTD.

