FEATURES

- Tiny: Two 10-Bit DACs in an 8-Lead MSOP— Half the Board Space of an SO-8
- Micropower: 60 1 A per DAC

Sleep Mode: 1μ A for Extended Battery Life

- Rail-to-Rail Voltage Outputs Drive 1000pF
- Wide2.7V to 5.5V Supply Range
- Double Buffered for Independent or Simultaneous DACUpdates
- Reference Range Includes Supply for Ratiometric OV-to-V C_{\propto} Output
- Reference Input Has Constant Impedance over All Codes (260k Ω Typ) —Biminates External Buffers
- 3-Wire Serial Interface with

Schmitt Trigger Inputs

- Differential Nonlinearity: $\leq \pm 0.75$ LSB Max

APPLICATIO NS

- Mobile Communications
- Digitally Controlled Amplifiers and Attenuators
- Portable Battery-Powered Instruments
- Automatic Calibration for Manufacturing
- Remote Industrial Devices
$\overline{\mathbf{L Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

DESCRIPTIO

The LTC ${ }^{\circledR} 1661$ integrates two accurate, serially addressable, 10-bit digital-to-analog converters (DACs) in a single tiny MS8 package. Each buffered DACdraws just 60μ Atotal supply current, yet is capable of supplying DC output currents in excess of 5 mA and reliably driving capacitive loads up to 1000pF. Sleep mode further reduces total supply current to a negligible $1 \mu \mathrm{~A}$.
Linear Technology's proprietary, inherently monotonic voltage interpolation architecture provides excellent linearity while allowing for an exceptionally small external form factor. The double-buffered input logic provides simultaneous updatecapability and canbeused to writeto either DAC without interrupting Sleep mode.

Ultralow supply current, power-saving Sleep mode and extremely compact size make the LTC1661 ideal for battery-powered applications, while its straightforward usability, high performanceand wide supply range make it an excellent choice as a general purpose converter.
For additional outputs and even greater board density, please refer to the LTC1660 micropower octal DAC for 10-bit applications. For 8-bit applications, pleaseconsult the LTC1665 micropower octal DAC.

BLOCK DIAG RAM

Differential Nonlinearity (DNL)

1

LTC 1661

ABSOLUTE MAXIMUM RATInG S

(Note 1)
$V_{\text {Ccto }}$ GND
-0.3 V to 7.5 V
Logic Inputs to GND \qquad -0.3 V to 7.5 V

Operating Temperature Range
$\mathrm{V}_{\text {OUT }}, \mathrm{V}_{\text {OUTB, }}$ REF to $\mathrm{GND}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ LTC1661C
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Maximum Junction Temperature \qquad $125^{\circ} \mathrm{C}$
Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

PACKAG E/ORDER INFORMATIO

	ORDR PART NUMBER		ORDER PART NUMBER
	LTC1661CMS8 LTC1661IMS8		LTC1661CN8 LTC1661IN8
	MS8 PART MARKING		
	LTDV LTDW		

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}} \leq \mathrm{V}_{\mathrm{CC}}$, $\mathrm{V}_{\text {OUT }}$ Unloaded unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Accuracy							
	Resolution		\bullet	10			Bits
	Monotonicity	$1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{RE}} \leq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V}$ (Note 2)	\bullet	10			Bits
DNL	Differential Nonlinearity	$1 \mathrm{~V} \leq \mathrm{V}_{\text {RE }} \leq \mathrm{V}_{\text {CC }}-0.1 \mathrm{~V}$ ((V (ete 2)	\bullet		± 0.1	± 0.75	LSB
INL	Integral Nonlinearity	$1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{RE}} \leq \mathrm{V}_{\mathrm{C}}-0.1 \mathrm{~V}$ ((ote 2)	\bullet		± 0.4	± 2	LSB
$\mathrm{V}_{\text {OS }}$	Offset Error	Measured at Code 20	\bullet		± 5	± 30	mV
	$V_{\text {OS }}$ Temperature Coefficient				± 15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
FSE	Full-Scale Eror	$\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R} E}=4.096 \mathrm{~V}$	\bullet		± 1	± 12	LSB
	Full-Scale Error Temperature Coefficient				± 30		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
PSR	Power Supply Rejection	$\mathrm{V}_{\mathrm{R} E}=2.5 \mathrm{~V}$			0.18		LSB/V

Reference Input

	Input Voltage Range		\bullet	0	$V_{\propto C}$	V
	Resistance	Active Mode	\bullet	140	260	
	Capacitance		\bullet	$\mathrm{k} \Omega$		
$\mathrm{I}_{\text {RF }}$	Reference Current	Sleep Mode	\bullet	15	pF	

Power Supply

V_{\propto}	Positive Supply Voltage	For Specified Performance	\bullet	2.7	5.5	V
I_{\propto}	Supply Ourrent	$V_{\propto C}=5 \mathrm{~V}($ Note 3)	\bullet	120	195	$\mu \mathrm{~A}$
		$V_{\propto C}=3 V($ Note 3)	\bullet	95	154	$\mu \mathrm{~A}$
		Sleep Mode (Note3)	\bullet	1	3	$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply vere the full operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}} \leq \mathrm{V}_{\mathrm{CC}}$, $\mathrm{V}_{\text {OUT }}$ Unloaded unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
DC Performance							
	Short-Circuit Current Low	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$, Code $=1023$	\bullet	10	25	100	mA
	Short-Oircuit Ourrent High	$\mathrm{V}_{\text {OTI }}=\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$, Code $=0$	\bullet	7	19	120	mA
AC Performance							
	Voltage Output Slew Rate	Rising (Notes 4, 5) Falling (Notes 4, 5)			$\begin{aligned} & 0.60 \\ & 0.25 \end{aligned}$		$\mathrm{V} / \mu \mathrm{s}$ V/us
	Voltage Output Settling Time	To $\pm 0.5 \mathrm{LSB}$ (Notes 4, 5)			30		$\mu \mathrm{s}$
	Capacitive Load Driving				1000		pF
Digital I/O							
V_{IH}	Digital Input High Voltage	$\begin{aligned} & V_{\propto C}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\propto C}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 2.4 \\ & 2.0 \end{aligned}$			V
VIL	Digital Input Low Voltage	$\begin{aligned} & V_{\subseteq C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\propto C}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	\bullet			$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	V
ILK	Digital Input Leakage	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ to V_{CC}	\bullet			± 10	$\mu \mathrm{A}$
$\underline{G_{N}}$	Digital Input Capacitance	(Note6)	\bullet			10	pF

TIMInG CHARACTERISTICS range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V							
t_{1}	$\mathrm{D}_{\text {IN }}$ Valid to SCK Setup		\bullet	40	15		ns
t_{2}	DIN Valid to SCK Hold		\bullet	0	-10		ns
t_{3}	SCK High Time	(Note6)	\bullet	30	14		ns
t_{4}	SCK Low Time	(Note6)	\bullet	30	14		ns
t_{5}	$\overline{\text { C/S/LD Pulse Width }}$	(Note6)	\bullet	80	27		ns
t_{6}	LSB SCK High to $\overline{\mathrm{CS}} / \mathrm{LD}$ High	(Note6)	\bullet	30	2		ns
t_{7}	$\overline{\mathrm{CS}} / \mathrm{LD}$ Low to SCK High	(Note6)	\bullet	20	-21		ns
t9	SCK Low to $\overline{C S} / L D$ Low	(Note6)	\bullet	0	-5		ns
t_{11}	$\overline{\mathrm{CS}} / \mathrm{LD}$ High to SCK Positive Edge	(Note 6)	\bullet	20	0		ns
	SCK Frequency	Square Wave (Note 6)	\bullet			16.7	MHz

$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V

t_{1}	DIN Valid to SOK Setup	(Note6)	\bullet	60	20	ns
t_{2}	DIN Valid to SCK Hold	(Note6)	\bullet	0	-10	ns
t_{3}	SCK High Time	(Note6)	\bullet	50	15	ns
t_{4}	SCK Low Time	(Note6)	\bullet	50	15	ns
t5	$\overline{\mathrm{CS}} / L D$ Pulse Width	(Note6)	\bullet	100	30	ns
t_{6}	LSB SOK High to CT/LD High	(Note6)	\bullet	50	3	ns
t_{7}	$\overline{\mathrm{CS}} / \mathrm{LD}$ Low to SCK High	(Note6)	\bullet	30	-14	ns
tg	SCK Low to $\overline{\mathrm{CS}} / \mathrm{LD}$ Low	(Note6)	\bullet	0	-5	ns
t_{11}	$\overline{\mathrm{CS}} / \mathrm{LD}$ High to SCK Positive Edge	(Note 6)	\bullet	30	0	ns
	SCK Frequency	Square Wave (Note6)	\bullet			MHz

Note 1: Absolute maximum ratings are those values beyond which the life of a device may be impaired.

Note 2: Nonlinearity and monotonicity are defined from code 20 to code 1023 (full scale). See Applications Information.

TMMInG CHARACTERISTICS

Note 3: Digital inputs at OV or V_{OC}
Note 4: Load is $10 \mathrm{k} \Omega$ in parallel with 100 pF .

Note 5: $\mathrm{V}_{\subseteq C}=\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$. DAC switched between $0.1 \mathrm{~V}_{\mathrm{FS}}$ and $0.9 \mathrm{~V}_{\mathrm{FS}}$, i.e., codes $\mathrm{k}=102$ and $\mathrm{k}=922$.

Note 6: Guaranteed by design and not subject to test.

TYPICAL PERFO RMAnCE CHARACTERISTICS

1661001

Differential Nonlinearity (DNL)

Midscale Output Voltage vs Load Current

Minimum Supply Headroom vs

Midscale Output Voltage vs Load Current

1661906

Load Current (Output Sourcing)

1661903

1661 co5

TYPICAL PERFO RMAnCE CHARACTERISTICS

TIMInG DIAG RAM

5

PIN FUNCTIO NS

CS/LD (Pin 1): Serial Interface Chip Select/Load Input. When $\bar{C} / L D i s l o w$, SCKis enabledfor shifting dataon $\mathrm{DIN}_{\text {I }}$ into the register. When ©S/LD is pulled high, SCK is disabled and the operation(s) specified in the Control code, A3-AO, is (are) performed. OMOS and TLL compatible.
SCK (Pin 2): Serial Interface Oock Input. OMOS and TTL compatible.
D_{IN} (Pin3):Serial InterfaceDataInput. Input worddataon the $\mathrm{Din}_{\text {in }}$ pin is shifted into the 16 -bit register on the rising edge of SCK. CMOS and TTL compatible.

REF (Pin 4): Reference Voltage Input. $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{R}} \leq \mathrm{V}_{\propto}$
$V_{\text {OUt A }}$, $V_{\text {OUt }}$ (Pins 8,5): DAC Analog Voltage Outputs. The output range is

$$
0 \leq V_{\text {OUt }}, V_{\text {OUTB }} \leq V_{\text {REF }}\left(\frac{1023}{1024}\right)
$$

V_{CC} (Pin 6): Supply Voltage Input. $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathcal{C}} \leq 5.5 \mathrm{~V}$.
GND (Pin 7): System Ground.

DEFInITIO NS

Differential Nonlinearity (DNL): The difference between the measured change and the ideal 1LSB change for any two adjacent codes. TheDNLerror between any two codes is calculated as follows:

$$
\mathrm{DNL}=\left(\Delta \mathrm{V}_{\mathrm{Or}}-\mathrm{LSB}\right) / \mathrm{LSB}
$$

Where $\Delta \mathrm{V}_{\text {Or }}$ is themeasured voltagedifference between two adjacent codes.

Full-Scale Error (FSE): The deviation of the actual fullscale voltage from ideal. FSEincludes the effects of offset and gain errors (see Applications Information).

Integral Nonlinearity (INL): Thedeviation from astraight line passing through the endpoints of the DAC transfer curve(Endpoint INL). Becausetheoutput cannot go below zero, the linearity is measured between full scale and the lowest code which guarantees the output will be greater than zero. The INLerror at agiven input code is calculated as follows:

INL $=\left[\mathrm{V}_{\mathrm{OU}}-\mathrm{V}_{\mathrm{OS}}-\left(\mathrm{V}_{\mathrm{FS}}-\mathrm{V}_{\mathrm{OS}}\right)(\right.$ code/1023 $\left.)\right] / \mathrm{LSB}$
Where $\mathrm{V}_{\text {OU }}$ is theoutput voltage of the DACmeasured at the given input code.

Least Significant Bit (LSB): The ideal voltage difference between two successive codes.

$$
\mathrm{LSB}=\mathrm{V}_{\mathrm{R}} \mathrm{I}^{1} 1024
$$

Resolution (n): Defines the number of DACoutput states $\left(2^{n}\right)$ that divide the full-scale range. Resolution does not imply linearity.
Voltage Offset Error (VOS): Nominally, the voltage at the output when the DAC is loaded with all zeros. A single supply DACcan have atruenegativeoffset, but theoutput cannot go below zero (see Applications Information).
For this reason, single supply DAC offset is measured at the lowest code that guarantees theoutput will begreater than zero.

OPERATIO

Transfer Function

The transfer function for the LTC1661 is:

$$
V_{\text {OUT(IDEAL) }}=\left(\frac{k}{1024}\right) V_{\text {RE }}
$$

wherek is the decimal equivalent of the binary DAC input code D9-D0 and V_{R} is the voltage at RE (Pin 6).

Power-On Reset

The LTC1661 positively clears the outputs to zero scale when power is first applied, making system initialization consistent and repeatable.

Power Supply Sequencing

Thevoltageat RE(Pin4) must not ever exceedthevoltage at V_{C} (Pin6) by morethan 0.3V. Particular care should be taken in the power supply turn-on and turn-off sequences to assure that this limit is observed. See Absolute Maximum Ratings.

Serial Interface

See Table 1. The 16-bit Input word consists of the 4-bit Control code, the10-bit Input codeand two don't-carebits.
Table 1. LTC1661 Input Word

After thelnput wordisloadedintotheregister (seeFigure 1), it is internally converted from serial to parallel format. The parallel 10-bit-wide Input code data path is then buffered by two latch registers.

Thefirst of these, the Input Register, is usedfor loading new input codes. The second buffer, theDACRegister, is used for updating theDACoutputs. Each DAChas its own 10-bit Input Register and 10-bit DACRegister.

Byselectingtheappropriate4-bit Control code(seeTable 2) it is possibleto perform singleoperations, such as loading one DAC or changing Power-Down status (Sleep/Wake). In addition, some Control codes perform two or more operations at the sametime. For example, one such code loads DACA, updates both outputs and Wakes the part up. The DACs can be loaded separately or together, but the outputs are always updated together.

Register Loading Sequence

See Figure 1. With $\overline{\mathrm{CS}} / L D$ held low, data on the $\mathrm{D}_{\text {IN }}$ input is shifted intothe16-bit Shift Register on the positiveedge of SCK. The4-bit Control code, A3-A0, is loaded first, then the10-bit Input code, D9-D0, orderedMSB-to-LSBineach case. Two don't-care bits, X1 and X0, are loaded last. When thefull 16-bit Input word has been shifted in, $\overline{\mathrm{CS}} / \mathrm{LD}$ is pulled high, causing thesystem to respond according to Table 2. The clock is disabled internally when $\overline{\mathrm{CS}} / \mathrm{LD}$ is high. Note: SCK must be low when CS/LD is pulled low.

Sleep Mode

DAC control code 1110_{b} is reserved for the special Sleep instruction (see Table2). In this mode, the digital parts of the circuit stay active while the analog sections are disabled; static power consumption is greatly reduced. The reference input and analog outputs are set in a high impedance state and all DAC settings are retained in memory so that when Sleep mode is exited, theoutputs of DACs not updated by the Wake command are restored to their last active state.
Sleep mode is initiated by performing a load sequence using control code 1110b (the DAC input code D9-DO is ignored).
To saveinstruction cycles, theDACs may beprepared with new input codes during Sleep (control codes 0001b and 0010b); then, asinglecommand (1000b) can be used both to wake the part and to update the output values.

LTC 1661

OPERATIO

Table 2. DAC Control Functions

CONTROL				INPUT REGISTERSTATUS	DAC REGISTERSTATUS	POWER-DOWN STATUS (SLEEP/WAKE)	COMMENTS
A3	A2	A1	A0				
0	0	0	0	No Change	No Update	No Change	No Operation. Power-Down Status Unchanged (Part Stays In Wake or Sleep Mode)
0	0	0	1	Load DACA	No Update	No Change	Load Input Register A with Data. DAC Outputs Unchanged. Power-Down Status Unchanged
0	0	1	0	Load DACB	No Update	No Change	Load Input Register B with Data. DAC Outputs Unchanged. Power-Down Status Unchanged
0	0	1	1	Reserved			
0	1	0	0	Reserved			
0	1	0	1	Reserved			
0	1	1	0	Reserved			
0	1	1	1	Reserved			
1	0	0	0	No Change	Update Outputs	Wake	Load Both DAC Regs with Existing Contents of Input Regs. Outputs Update. Part Wakes Up
1	0	0	1	Load DACA	Update Outputs	Wake	Load Input Reg A. Load DAC Regs with New Contents of Input Reg A and Existing Contents of Reg B. Outputs Update. Part Wakes Up
1	0	1	0	Load DACB	Update Outputs	Wake	Load Input Reg B. Load DAC Regs with Existing Contents of Input Reg A and New Contents of Reg B. Outputs Update. Part Wakes Up
1	0	1	1	Reserved			
1	1	0	0	Reserved			
1	1	0	1	No Change	No Update	Wake	Part Wakes Up. Input and DAC Regs Unchanged. DAC Outputs Reflect Existing Contents of DACRegs
1	1	1	0	No Change	No Update	Sleep	Part Goes to Sleep. Input and DAC Regs Unchanged. DAC Outputs Set to High Impedance State
1	1	1	1	Load DACs A, B with Same 10-Bit Code	Update Outputs	Wake	Load Both Input Regs. Load Both DAC Regs with New Contents of Input Regs. Outputs Update. Part Wakes Up

Figure 1. Register Loading Sequence

OPERATIO

Voltage Outputs

Each of the rail-to-rail output amplifiers contained in the LTC1661 can typically source or sink up to 5 mA $\left(\mathrm{V}_{\propto}=5 \mathrm{~V}\right)$. The outputs swing to within a few millivolts of either supply when unloaded and have an equivalent output resistance of 85Ω (typical) when driving aload to the rails. Theoutput amplifiers arestabledriving capacitive loads up to 1000pF.

A small resistor placed in series with the output can be used to achieve stability for any load capacitance. A $1 \mu \mathrm{~F}$ load can besuccessfully driven by inserting a20 Ω resistor in series with the $\mathrm{V}_{\text {our }}$ pin. A 2.2μ Fload needs only a 10Ω resistor, and a $10 \mu \mathrm{~F}$ electrolytic capacitor can be used without any resistor (the equivalent series resistance of the capacitor itself provides the required small resistance). In any of these cases, larger values of resistance, capacitance or both may be substituted for the values given.

Rail-to-Rail Output Considerations

In any rail-to-rail DAC, the output swing is limited to voltages within the supply range.

If the DAC offset is negative, the output for the lowest codes limits at OV as shown in Fgure 2 b .

Similarly, limiting can occur near full scale when the REF pin is tied to V_{\subseteq} If $\mathrm{V}_{\mathrm{RE}}=\mathrm{V}_{\propto C}$ and the DACfull-scaleerror (FSE) is positive, theoutput for the highest codes limits at $V_{\propto c}$ as shown in Figure2c. No full-scalelimiting can occur if $V_{R E}$ is less than $V_{\propto C}$ - FSE
Offset and linearity are defined and tested over the region of the DACtransfer function where no output limiting can occur.

Figure 2. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect of Negative Offset for Codes Near Zero Scale (c) Effect of Positive Full-Scale Error for Input Codes Near Full Scale When VREF $=V_{C C}$

LTC 1661

TYPICAL APPLICATIO NS

FOR VALUES SHOWN,
$\Delta \mathrm{V}_{\mathrm{H}}, \Delta \mathrm{V}_{\mathrm{L}}$ ADJUSTMENT RANGE $= \pm 250 \mathrm{mV}$
$\Delta \mathrm{V}_{\mathrm{H}}, \Delta \mathrm{V}_{\mathrm{L}}$ STEP SIZE $=500 \mu \mathrm{~V}$
Figure 3. Pin Driver V_{H} and V_{L} Adjustment in ATE Applications

Figure 4. Using the LTC1258 and the LTC1661 In a Single Li-Ion Battery Application

MS8 Package
8-Lead Plastic MSOP
(LTCDWG\# 05-08-1660)
(LTCDWG\# 05-08-1660)

* DIMENSION DOES NOT INCLUDEMOLD RLASH, PROTRUSIONS OR GATE BURRS. MOLD RASH,

PROTRUSIONS OR GATE BURRS SHALL NOT EXC\#D 0.006 " (0.152 mm) PER SIDE
** DIMENSION DOES NOT INCLUDE INIERLEAD ALASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXC\#D $0.006 "(0.152 \mathrm{~mm})$ PER SIDE

N8 Package

8-Lead PDIP (Narrow 0.300)
(LTCDWG\# 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDEMOLD ALASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXC\#D 0.010 INCH (0.254 mm)

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that theinterconnection of itscircuits as described herein will not infringeon existing patent rights.

LTC 1661

TYPICAL APPLICATIO

FOR EACH U1 AND U2

CODE A	CODE \mathbf{B}	$\Delta \mathbf{V}_{\mathbf{H}}, \Delta \mathbf{V}_{\mathbf{L}}$
512	1023	-250 mV
512	512	0
512	0	250 mV

