

12-Bit, Current Output, Complete High Speed D/A Converter

AD565

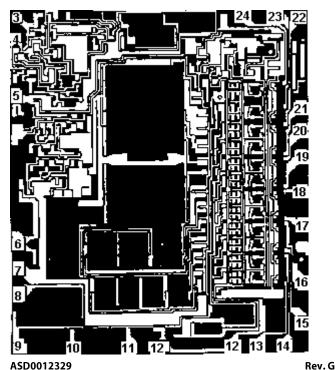
1.0 <u>SCOPE</u>

This specification documents the detailed requirements for Analog Devices space qualified die including die qualification as described for Class K in MIL-PRF-38534, Appendix C, Table C-II except as modified herein.

The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure at <u>http://www.analog.com/aerospace</u> is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/AD565

2.0 <u>Part Number</u>. The complete part number(s) of this specification follow:


Part NumberDescriptionAD565-000C12-Bit, Current Output, Complete High Speed D/A Converter

3.0 Die Information

3.1 Die Dimensions

Die Size	Die Thickness mil	Bond Pad Metalization		
119 mil x 146 mil	19 mil \pm 2 mil	Al/Cu		

3.2 Die Picture

BIT 1 IN (MSB) NC 1 24 NC 2 BIT 2 IN 23 V_{CC} 3 BIT 3 IN 22 REF OUT (+10V ±1%) 4 21 BIT 4 IN AD565A REF GND 5 BIT 5 IN 20 TOP VIEW BIT 6 IN REF IN 6 19 (Not to Scale) -V_{EE} 7 18 BIT 7 IN BIPOLAR OFFSET IN 8 17 BIT 8 IN DAC OUT (-2mA F.S.) 9 BIT 9 IN 16 10V SPAN R 10 15 BIT 10 IN 20V SPAN R 11 14 BIT 11 IN PWR GND 12 13 BIT 12 IN (LSB) NC = NO CONNECT

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2011 Analog Devices, Inc. All rights reserved.

AD565

3.3 Absolute Maximum Ratings. 1/

V _{CC} to power ground	0 to +18V dc
V _{EE} to power ground	0 to -18V dc
Voltage on DAC output (pin 9)	3V dc to +12V dc
Digital inputs (pins 13 to 24) to power ground	1.0V dc to +7.0V dc
Ref in to ref ground	±12V dc
Bipolar offset to reference ground	±12V dc
10V span R to reference ground	±12V dc
20V span R to reference ground	±24V dc
Ref out	Indefinite short to power ground
	momentary short to V _{CC}
Power dissipation	1000 mW
Storage temperature range	
Operating temperature range	55°C to +125°C
Junction temperature (T _J)	+150°C

<u>1</u>/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

3.4 <u>Recommended operating conditions.</u>

Positive supply voltage (V _{CC})	+15V
Negative supply voltage (V _{EE})	15V
Operating ambient temperature range	55°C to +125°C

4.0 <u>Die Qualification</u>

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Qual Sample Package Sidebrazed DIP
- (b) Qual Sample Size and Qual Acceptance Criteria 10/0
- (c) Pre-screen electrical test over temperature performed post-assembly prior to die qualification.

5.0 **Dice Electrical Characteristics**

Table I						
Parameter Symbol		Conditions Note 1	Limit Min	Limit Max	Units	
Relative Accuracy	RA	All bits w/ positive errors on All bits w/ negative errors on		±0.5	LSB	
Differential Nonlinearity	DNL	Major transition		±0.75	LSB	
Gain Error	AE	$R_{REF} = 50 \cdot fixed$		±0.25	% of FS	
Offset Error	Vos			±0.05	% of FS	
Bipolar Zero Error Note 2	B _{PZE}	$R_{BO} = 50 \cdot fixed$		±0.15	% of FS	
Reference Output Voltage	V _{REF}	Note 3	9.90	10.10	V	
Output Current	Іоит —	Unipolar (all bits on)	-1.6	-2.4	mA	
Output Current		Bipolar (all bits on)	-0.8	-1.2	IIIA	
Dower Supply Dejection Datio	PSRR	$V_{s} = +11.4V \text{ to } +16.5V \text{ dc}$		±10.0	PPM of FRS/%	
Power Supply Rejection Ratio		$V_{\rm S}$ = -11.4V to -16.5V dc		±25.0		
Power Supply Current	lcc			+5.0		
Note 4, 5	I _{EE}			-18.0	mA	
Power Dissipation	PD			345.0	mW	
Digital Input High Voltage	VIH		2.0	5.5	V	
Digital Input Low Voltage	VIL			0.8	V	
Digital Input High Current	Ін	$V_{IH} = 5.5V$		300.0	μΑ	
Digital Input Low Current	lı∟	$V_{IL} = 0V$		100.0	μA	

Table I Notes:

 $1. \qquad V_{CC} = +15V, \, V_{EE} = -15V, \, V_{IH} = 2.0V, \, V_{IL} = 0.8V, \, T_A = 25^{\circ}C.$

2. MSB on, all other bits off.

3. The reference output is loaded with 0.5mA reference input current, 1.0mA bipolar offset current, and 1.5mA additional current.

AD565

Electrical Characteristics for Qual Samples 5.1

Table II							
Parameter	Symbol	Conditions Note 1	Sub- groups	Limit Min	Limit Max	Units	
Relative Accuracy	RA	All bits w/ positive errors on All bits w/ negative errors on	1		±0.5	LSB	
		, in bits wy negative enois on	2, 3		±0.75		
Differential Nonlinearity	DNL	Major transition	1		±0.75	LSB	
Gain Error	AE	$R_{REF} = 50 \cdot fixed$	2, 3		±1.0 ±0.25	% of FS	
			1 1		±0.25		
Gain Error Temperature Coefficient	TCA _E		2, 3		±30.0	ppm of FS/°C	
Offset Error	Vos		1		±0.05	% of FS	
Offset Error Temperature Coefficient	TCVos		2, 3		±2.0	ppm of FS/°C	
Bipolar Zero Error Note 2	B _{PZE}	$R_{BO} = 50 \cdot fixed$	1		±0.15	% of FS	
Bipolar Zero Error Temperature Coefficient Note 2	TCB _{PZE}		2, 3		±10.0	ppm of FS/°C	
Reference Output Voltage Note 3	V_{REF}		1, 2, 3	9.90	10.10	V	
Reference Output Current Note 4	IREF		1	1.5		mA	
Output Current	Іоит	Unipolar (all bits on) Bipolar (all bits on)	- 1 -	-1.6 -0.8	-2.4 -1.2	mA	
Power Supply Rejection Ratio	PSRR	$V_s = +11.4V$ to $+16.5V$ dc	1		±10.0	PPM of FRS/%	
	1 5111	$V_{\rm S}$ = -11.4V to -16.5V dc			±25.0		
Power Supply Current Note 4, 5	Icc I _{EE}		1 -		+5.0 -18.0	mA	
Power Dissipation	PD		1		345.0	mW	
Digital Input High Voltage	VIH		1	2.0	5.5	V	
Digital Input Low Voltage	VIL		1		0.8	V	
Digital Input High Current	Iн	V⊪ = 5.5V	1		300.0	μΑ	
Digital Input Low Current	١	$V_{\text{IL}}=0V$	1		100.0	μΑ	

Table II Notes:

 V_{CC} = +15V, V_{EE} = -15V, V_{IH} = 2.0V, V_{IL} = 0.8V.
MSB on, all other bits off.
In subgroup 1, the reference output is loaded with 0.5mA reference input current, 1.0mA bipolar offset current, and 1.5mA additional current. In subgroup 2 and 3, only the 0.5mA reference input current is applied. The reference must be buffered to supply external loads at elevated temperatures.

4. Guaranteed for +11.4 \leq V_{CC} \leq +16.5V.

Guaranteed for $-11.4 \le V_{EE} \le -16.5V$. 5.

6.0 Delta Parameter Table

Table III								
Demonstern	Symbol	Sub- groups	Post Burn In Limit		Post Life Test Limit		Life Test	
Parameter			Min	Max	Min	Max	Delta	Units
Gain Error	A _E	1		±0.25		±0.30	±0.05	% of FS
Bipolar Zero Error	B _{PZE}	1		±0.15		±0.225	±0.075	% of FS

7.0 Life Test/Burn-In Information

- 7.1 HTRB is not applicable for this drawing.
- 7.2 Burn-in is per MIL-STD-883 Method 1015 test condition B or C.
- 7.3 Steady state life test is per MIL-STD-883 Method 1005.

AD565

Rev	Description of Change	Date	
Α	Initiate	June 26, 2001	
В	Update web address. Fix footer	Jan. 25, 2002	
С	Update web address.	Aug. 5, 2003	
D	Update header/footer & add to 1.0 Scope description.	Feb. 26, 2008	
E	Add Absolute Maximum Ratings table in section 3.3	April 2, 2008	
F	Updated Section 4.0c note to indicated pre-screen temp testing being performed.	June 6, 2009	
G	Updated Fonts and Sizes to ADI standard, enlarged die picture pad numbering	22-Sept-2011	

© 2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective companies. Printed in the U.S.A. 11/11

www.analog.com

ASD0012329 Rev.G | Page 6 of 6