

Analog.com EngineerZone AnalogDialogue Linear.com Login

Wiki
Resources and Tools Education Content Wiki Help Wiki Tools search wiki

T a b l e o f C o n t e n t s

AD-FMCADC4-EBZ FMC Board

Introduction

Hardware

Devices

Clocking

Analog Front End

Revision A

Running No-OS Application &
Changing Sampling Rate to
1.24GHz

Downloads (Hardware)

Downloads (HDL)

FMCADC4

Help & Support

Downloads (Linux)

This version (23 Feb 2017 12:29) was approved by larsc.
The Previously approved version (22 Feb 2017 18:16) is available.

AD-FMCADC4-EBZ FMC Board

Introduction
The EVAL-AD-FMCADC4-EBZ is a high speed four channel data acquisition board featuring two

AD9680 dual channel ADC at 1000 MSPS (1240 MSPS) and four ADA4961 ADA4961 low
distortion, 3.2 GHz, RF DGA driving each converter. The FMC form factor supports the JESD204B
high speed serial interface. All clocking and channel synchronization is provisioned on-board using
the AD9528 AD9528 clock generator. This board meets most of the FMC specifications in terms of
mechanical size, mounting hole locations etc., for further details, please refer to the FMC
specification.

Although this board does meet most of the FMC specifications, it is not meant as a commercial off
the shelf (COTS) board. If a commercial, ready to go integrate product is required, please refer to
one of the many FMC manufacturers.

ADI also provides reference designs (HDL and software) for this board to work with commonly
available Altera and Xilinx development boards.

Hardware
The AD-FMCADC4-EBZ board's primary purpose is to demonstrate the capabilities of the devices on
board quickly and easily by providing a seamless interface to an FMC carrier platform and running
the reference design on the carrier FPGA. The board is designed to self power and self clock when
connected to the FMC carrier. The analog signals (up to four) are connected to J301A, J301B, J301C
and J301D. This rapid prototyping board can also be synchronized across channels.

Devices
The FMC board includes the following products by Analog Devices:

AD9680 14-bit dual channel ADC with sampling speeds of up to 1250 MSPS, with a JESD204B digital interface.

ADA4961 Low Distortion, 3.2 GHz, RF Digital Gain Amplifier.

AD9528 JESD204B Clock Generator with 14 LVDS Outputs

ADP2384 20 V, 4 A, Synchronous, Step-Down DC-to-DC Regulator

ADP7104 is a 20V, 500mA, low noise, CMOS LDO

ADM7154 600 mA, Ultra Low Noise, High PSRR, RF Linear Regulator

ADM7172 6.5 V, 2 A, Ultralow Noise, High PSRR, Fast Transient Response CMOS LDO

ADP1741 is a 2A, low Vin, low dropout, CMOS linear regulator

 Top View

Downloaded from Arrow.com.

http://www.arrow.com

 Bottom View

Clocking
The AD-FMCADC4-EBZ includes an on-board 80MHz reference oscillator from Crystek. This feature can be disconnected and an external
reference can be applied through J901. When referencing the schematic make sure the proper component changes are made in order to directly
route the input into the AD9528.

Analog Front End
The AD-FMCADC4-EBZ uses a passive front end designed for very wide bandwidth. A single ended input needs to be provided to the analog
inputs mentioned earlier. A 1:2 impedance ratio broadband balun then converts the input signal differentially to the ADA4961 inputs and has a
1.6GHz bandwidth at -3dB. Each channel amplifier can be adjusted independently in terms of gain.

Revision A
The revision A board supports amplifier gain control via spi. After power-up, the gain of the amplifier defaults to an attenuated state. Use a low
jitter, low noise signal source with a level at -20dBm to the analog inputs (J301-A/B/C/D). Apply a signal source no greater than -10dBm to
achieve full-scale of the converter when maximum gain of the amplifier is applied.

Running No-OS Application & Changing Sampling Rate to 1.24GHz
The HDL reference design is built around a processor as in an embedded system. You may use either Linux or No-OS software to demonstrate
the design (details in the downloads section). In order to run the HDL with the No-OS application, first we need to build the HDL bit file and
software elf file.

At the time of this writing, we are using the 'dev' branch for both. The HDL user guide contains the instructions to build the bit file. Please
make sure you use the 'dev' branch (checkout dev right after cloning).

Once the bit file is ready, follow these instructions to build the elf file. This assumes you are following our directory structures. If you are not, just
get the idea from here and port it to your environment. However you have to figure out things on your own.

1. Clone No-OS repository

2. Checkout the 'dev' branch (git checkout dev)

3. Change the directory to `ad-fmcadc4-ebz/zc706`.

4. Make the elf file by running `make HDF-FILE= /projects/fmcadc4/zc706/fmcadc4_zc706.sdk/system_top.hdf`

The make will build the default 'hello-world', but we only need the bsp and I am no fan of eclipse, hence this method. If you are more comfortable
with the GUI, import all the files (or folders) that the make uses.

A typical run looks like this:

[~/github/noos/ad‐fmcadc4‐ebz/zc706]> make HDF‐FILE=~/github/hdl/projects/fmcadc4/zc706/fmcadc4_zc706.sdk/system_top.hdf
xsct ‐s ../../scripts/xilinx_xsct.tcl ~/github/hdl/projects/fmcadc4/zc706/fmcadc4_zc706.sdk/system_top.hdf >> xilinx_xsct.log 2
>&1

arm‐xilinx‐eabi‐gcc ‐DXILINX ‐Ibsp/ps7_cortexa9_0/include ‐I.. ‐I../../common_drivers/adc_core ‐I../../common_drivers/jesd204b_
gt ‐I../../common_drivers/jesd204b_v51 ‐I../../common_drivers/xilinx_platform_drivers ‐I../../drivers/ad9528 ‐I../../drivers/ad
9680 ‐Os ‐ffunction‐sections ‐fdata‐sections ‐o zc706.elf sw/src/platform.c ../ad_fmcadc4_ebz.c ../../common_drivers/adc_core/a
dc_core.c ../../common_drivers/jesd204b_gt/jesd204b_gt.c ../../common_drivers/jesd204b_v51/jesd204b_v51.c ../../common_drivers/
xilinx_platform_drivers/platform_drivers.c ../../drivers/ad9528/ad9528.c ../../drivers/ad9680/ad9680.c ‐Lbsp/ps7_cortexa9_0/lib
/ ‐Tsw/src/lscript.ld ‐Wl,‐‐start‐group,‐lxil,‐lgcc,‐lc,‐‐end‐group
[~/github/noos/ad‐fmcadc4‐ebz/zc706]

Start an UART terminal.

[USB0]
port = /dev/ttyUSB0
speed = 115200
b i t s = 8
s t o p b i t s = 1
parity = none
crlfauto = True ## if not set, expect non‐aligned text

Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com

[~/github/noos/ad‐fmcadc4‐ebz/zc706]> gtkterm ‐c USB0 &

The folder contains a zc706.tcl file that you can launch with xmd. You can also run it using Vivado or SDK - up to you.

[~/github/noos/ad‐fmcadc4‐ebz/zc706]> xmd ‐tcl zc706.tcl
rlwrap: warning: your is 'xterm' but rlwrap couldn't find it in the terminfo database. Expect some problems.

 Xilinx Microprocessor Debugger (XMD) Engine
 XMD v2015.2 (64‐bit)
 SW Build 1266856 on Fri Jun 26 16:35:25 MDT 2015
 ** Copyright 1986‐2015 Xilinx, Inc. All Rights Reserved.

Executing user script : zc706.tcl
Configuring Device 2 (xc7z045) with Bitstream ‐‐ hw/system_top.bit

....................10...................20...................30....................40...................50...................6
0....................70...................80...................90....................Done
Successfully downloaded bit file.

JTAG chain configuration
‐‐
Device ID Code IR Length Part Name
 1 4ba00477 4 arm_dap
 2 23731093 6 xc7z045

JTAG chain configuration
‐‐
Device ID Code IR Length Part Name
 1 4ba00477 4 arm_dap
 2 23731093 6 xc7z045

‐‐
Enabling extended memory access checks for Zynq.
Writes to reserved memory are not permitted and reads return 0.
To disable this feature, run "debugconfig ‐memory_access_check disable".

‐‐

CortexA9 Processor Configuration
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Version.............................0x00000003
User ID.............................0x00000000
No of PC Breakpoints................6
No of Addr/Data Watchpoints.........4

Connected to "arm" target. id = 64
Starting GDB server for "arm" target (id = 64) at TCP port no 1234
Processor stopped

Processor Reset DONE

Downloading Program ‐‐ zc706.elf
 section, .text: 0x00100000‐0x0010656b
 section, .init: 0x0010656c‐0x00106583
 section, .fini: 0x00106584‐0x0010659b
 section, .rodata: 0x0010659c‐0x00106927
 section, .data: 0x00106928‐0x00106e9b
 section, .eh_frame: 0x00106e9c‐0x00106e9f
 section, .mmu_tbl: 0x00108000‐0x0010bfff
 section, .ARM.exidx: 0x0010c000‐0x0010c007
 section, .init_array: 0x0010c008‐0x0010c00f
 section, .fini_array: 0x0010c010‐0x0010c013
 section, .bss: 0x0010c014‐0x0010c0a7
 section, .heap: 0x0010c0a8‐0x0010e0af
 section, .stack: 0x0010e0b0‐0x001118af
Download Progress..10.20.30.40.50.60.70.80.90.Done
Setting PC with Program Start Address 0x00100000
Processor started. Type "stop" to stop processor

RUNNING> Disconnected from Target 64

Disconnected from Target 352

The following messages should appear on the terminal.

AD9528 successfully initialized.

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

AD9680 PLL is locked.
AD9680 successfully initialized.
AD9680 PLL is locked.
AD9680 successfully initialized.
JESD204B successfully initialized.
ADC Core Initialized (1000 MHz).
ADC Core Initialized (1000 MHz).
Initialization done.

Capture done.

A brief background information on what is happening. Let's look at the No-OS main function. First, it configures and sets the GPIO based on the
board.

 adc4_gpio_ctl(GPIO_DEVICE_ID);

The clock chip is programmed to output the desired clocks and sys-ref signals. The default setting is 1GHz for the AD9680 and 500MHz for the
FPGA.

 ad9528_setup(SPI_DEVICE_ID, 0, ad9528_pdata_lpc);

The transceiver cores are initialized. Here only DRP access is possible. If you are planning to change the transceivers, this is where they should
be.

 jesd204b_gt_initialize(FMCADC4_GT_BASEADDR, 8);

The AD9680 devices are initialized (checking the PLL status)

 ad9680_setup(SPI_DEVICE_ID, 1);
 ad9680_setup(SPI_DEVICE_ID, 2);

The design uses Xilinx's JESD IP- it needs to be programmed to match the device settings (frame count, byte count, scrambling and such).

 jesd204b_setup(AD9680_JESD_BASEADDR, jesd204b_st);

After the above setup, bring the transceivers up, here we check for everything on the link, starting from the PLL locked to SYNC deasserted.

 jesd204b_gt_setup(ad9680_gt_link);

The individual AD9680 cores are brought out of reset.

 adc_setup(ad9680_0, 2);
 adc_setup(ad9680_1, 2);

The ADC has a PRBS generator at the sample level that can be monitored in the FPGA. This is a robust way to confirming the link status. The
software monitors this and reports any errors.

This is setting the PRBS generator in the device.

 ad9680_spi_write(1, AD9680_REG_DEVICE_INDEX, 0x3);
 ad9680_spi_write(1, AD9680_REG_ADC_TEST_MODE, 0x05);
 ad9680_spi_write(1, AD9680_REG_OUTPUT_MODE, 0);
 ad9680_spi_write(2, AD9680_REG_DEVICE_INDEX, 0x3);
 ad9680_spi_write(2, AD9680_REG_ADC_TEST_MODE, 0x05);
 ad9680_spi_write(2, AD9680_REG_OUTPUT_MODE, 0);

This is setting the PRBS monitors in the FPGA.

 adc_pn_mon(ad9680_0, 2, 1);
 adc_pn_mon(ad9680_1, 2, 1);

If you don't see any other messages in the UART other than the ones mentioned above- all is well. You can open up Vivado and see things in ILA
also.

Let's see now how we can change the sampling rate to 1.24 GHz. The AD9680 maximum sampling rate is 1.25GHz. However the board uses a
80MHz crystal as the reference clock to AD9528. Unless you change it, this limits the maximum clock output on the banks to 1.24GHz. Also note
that the Kintex 7 SOC on ZC706 is a -2 device. The maximum lane rate is limited to 10Gbps. However, it should be possible to over clock the
transceiver (but do so at your own risk). Officially, you must get a -3 device to run the link at 12.4Gbps.

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Going back to our program.

#ifdef MODE_1_24G
 ad9528_pdata_lpc.pll2_ndiv_a_cnt = 1;
 ad9528_pdata_lpc.pll2_ndiv_b_cnt = 23;
 ad9528_pdata_lpc.pll2_n2_div = 31;
 ad9528_pdata_lpc.pll2_vco_diff_m1 = 3;
#endif

Let's define that macro somewhere on that file.

[~/github/noos/ad‐fmcadc4‐ebz/zc706]> gitdiff.pl ../ad_fmcadc4_ebz.c
71a72
> #define MODE_1_24G

And re-run the make.

[~/github/noos/ad‐fmcadc4‐ebz/zc706]> make HDF‐FILE=~/github/hdl/projects/fmcadc4/zc706/fmcadc4_zc706.sdk/system_top.hdf
arm‐xilinx‐eabi‐gcc ‐DXILINX ‐Ibsp/ps7_cortexa9_0/include ‐I.. ‐I../../common_drivers/adc_core ‐I../../common_drivers/jesd204b_
gt ‐I../../common_drivers/jesd204b_v51 ‐I../../common_drivers/xilinx_platform_drivers ‐I../../drivers/ad9528 ‐I../../drivers/ad
9680 ‐Os ‐ffunction‐sections ‐fdata‐sections ‐o zc706.elf sw/src/platform.c ../ad_fmcadc4_ebz.c ../../common_drivers/adc_core/a
dc_core.c ../../common_drivers/jesd204b_gt/jesd204b_gt.c ../../common_drivers/jesd204b_v51/jesd204b_v51.c ../../common_drivers/
xilinx_platform_drivers/platform_drivers.c ../../drivers/ad9528/ad9528.c ../../drivers/ad9680/ad9680.c ‐Lbsp/ps7_cortexa9_0/lib
/ ‐Tsw/src/lscript.ld ‐Wl,‐‐start‐group,‐lxil,‐lgcc,‐lc,‐‐end‐group

The UART should now show this.

AD9528 successfully initialized.
AD9680 PLL is locked.
AD9680 successfully initialized.
AD9680 PLL is locked.
AD9680 successfully initialized.
JESD204B successfully initialized.
ADC Core Initialized (1240 MHz).
ADC Core Initialized (1240 MHz).
Initialization done.

Capture done.

The clocks reported by the core is 1240MHz instead of the previous 1000MHz. There are no error messages and PRBS locks. This is all there is
to it. There is no need for HDL modifications. However, if you ran into trouble here are a couple of things to try.

If you have ran this back to back- try running 1.24GHz option from power up.

Modify the HDL to use a -3 device and change the constraints to run at 12.40Gbps

Upgrade the device on board to a -3 device.

Here is the UART window screen capture.

The application leaves the device in a ramp pattern, and if you are looking at the data using ILA should see it. If you would like to switch it to the
analog input, do the following. In this case I am changing only the fourth channel (SMA - J301D).

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 ad9680_spi_write(1, AD9680_REG_DEVICE_INDEX, 0x3);
 ad9680_spi_write(1, AD9680_REG_ADC_TEST_MODE, 0x0F);
 ad9680_spi_write(1, AD9680_REG_OUTPUT_MODE, 0x1);

 ad9680_spi_write(2, AD9680_REG_DEVICE_INDEX, 0x3);
 ad9680_spi_write(2, AD9680_REG_ADC_TEST_MODE, 0x0F);
 ad9680_spi_write(2, AD9680_REG_OUTPUT_MODE, 0x1);

 ad9680_spi_write(2, AD9680_REG_DEVICE_INDEX, 0x2);
 ad9680_spi_write(2, AD9680_REG_ADC_TEST_MODE, 0x00);
 ad9680_spi_write(2, AD9680_REG_OUTPUT_MODE, 0x1);
 adc_write(ad9680_1, ADC_REG_CHAN_CNTRL(1), 0x51);

Here is the ILA plot screen capture.

Downloads (Hardware)

Rev A:

Schematic

Bill of Materials

PCBoard Fab Drawing

PCBoard Gerber files

Downloads (HDL)
FMCADC4

Hardware Project Carriers Library Cores

AD-FMCADC4-EBZ fmcadc4 zc706 axi_ad9680

axi_dmac

util_axis_fifo

util_axis_resize

util_cpack

axi_jesd_gt

util_jesd_gt

util_bsplit

util_mfifo

axi_clkgen

axi_hdmi_tx

axi_spdif_tx

axi_adcfifo

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

沪ICP备09046653号

Help & Support

The carriers (abbrevations can be found here) are commonly available FPGA evaluation boards.

The HDL user guide contains all the documentation, build instructions and register map tables.

The following quick links allows you to browse the github repository for a list of current branches, library

components, and projects.

Questions? We can help with FPGA questions, Linux driver questions, No-OS Drivers.

Downloads (Linux)
JESD204B Linux Driver

AD9680-ADA4961 Linux driver

ZC706 Linux image

resources/eval/user-guides/ad-fmcadc4-ebz.txt · Last modified: 22 Feb 2017 19:23 by larsc

15,000
Problem Solvers

4,700+
Patents

125,000
Customers

50+
Years

Analog Devices. Dedicated to solving the toughest engineering challenges.

Ahead of What's Possible
ADI enables our customers to interpret the world around

us by intelligently bridging the physical and digital with

unmatched technologies that sense, measure and

connect. We collaborate with our customers to

accelerate the pace of innovation and create

breakthrough solutions that are ahead of what’s possible.

See the Innovations

SOCIAL

About ADI Analog Dialogue

Careers Contact us

Investor Relations News Room

Quality & Reliability Sales & Distribution

QUICK LINKS

English

简体中文

日本語

Руccкий

LANGUAGES NEWSLETTER

Interested in the latest news and articles about ADI

products, design tools, training and events?

Choose from one of our 12 newsletters that match

your product area of interest, delivered monthly or

quarterly to your inbox.

Sign Up

© 1995 - 2015 Analog Devices, Inc. All Rights Reserved Sitemap Privacy & Security Terms of use

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

