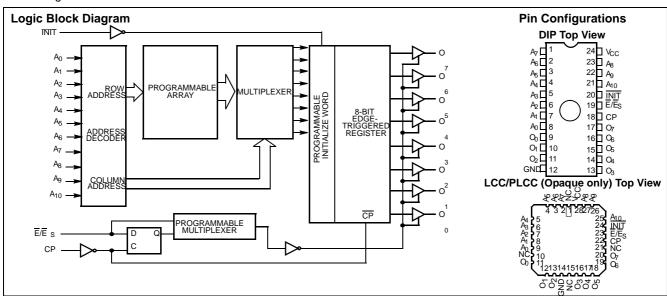


2K x 8 Reprogrammable Registered PROM

Features


- · Windowed for reprogrammability
- CMOS for optimum speed/power
- · High speed
 - 15-ns address set-up
 - 10-ns clock to output
- · Low power
 - 330 mW (commercial) for -25 ns
 - 660 mW (military)
- Programmable synchronous or asynchronous output enable
- On-chip edge-triggered registers
- Programmable asynchronous register (INIT)
- EPROM technology, 100% programmable
- Slim, 300-mil, 24-pin plastic or hermetic DIP
- 5V ±10% V_{CC}, commercial and military
- TTL-compatible I/O
- · Direct replacement for bipolar PROMs
- Capable of withstanding greater than 2001V static discharge

Functional Description

The CY7C245A is a high-performance, 2K x 8, electrically programmable, read-only memory packaged in a slim 300-mil plastic or hermetic DIP. The ceramic package may be equipped with an erasure window; when exposed to UV light the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floating-gate technology and byte-wide intelligent programming algorithms.

The CY7C245A replaces bipolar devices and offers the advantages of lower power, reprogrammability, superior performance and high programming yield. The EPROM cell requires only 12.5V for the supervoltage, and low current requirements allow gang programming. The EPROM cells allow each memory location to be tested 100%, because each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet AC specification limits.

The CY7C245A has an asynchronous initialize function (INIT). This function acts as a 2049th 8-bit word loaded into the on-chip register. It is user programmable with any desired word, or <u>may</u> be used as a PRESET or CLEAR function on the outputs. INIT is triggered by a low level, not an edge.

Selection Guide

		7C245A-15	7C245A-18	7C245A-25	7C245A-35	Unit
Minimum Address Set-up Time	15	18	25	35	ns	
Maximum Clock to Output		10	12	12	15	ns
Maximum Operating Current Standard	Commercial	120	120	90	90	mA
	Military		120	120	120	mA

Cypress Semiconductor Corporation

Document #: 38-04007 Rev. *E

198 Champion Court

San Jose, CA 95134-1709

408-943-2600

Revised August 17, 2006

Downloaded from Arrow.com. [+] Feedback

Operating Modes

The CY7C245A is a CMOS electrically programmable read only memory organized as 2048 words x 8 bits and is a pin-for-pin replacement for bipolar TTL fusible link PROMs. The CY7C245A incorporates a D-type, master-slave register on chip, reducing the cost and size of pipelined microprogrammed systems and applications where accessed PROM data is stored temporarily in a register. Additional flexibility is provided with a programmable synchronous (\overline{E}_S) or asynchronous (\overline{E}) output enable and asynchronous initialization (\overline{INIT}).

Upon power-up the state of the outputs will_depend on the programmed state of the enable function (\overline{E}_S or \overline{E}). If the synchronous enable (\overline{E}_S) has been programmed, the register will be in the set condition causing the outputs (O_0-O_7) to be in the QFF or high-impedance state. If the asynchronous enable (\overline{E}) is being used, the outputs will come up in the OFF or high-impedance state only if the enable (\overline{E}) input is at a HIGH logic level. Data is read by applying the memory location to the address inputs (A_0-A_{10}) and a logic LOW to the enable input. The stored data is accessed and loaded into the master flip-flops of the data register during the address set-up time. At the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops, which drive the output buffers, and the accessed data will appear at the outputs (O_0-O_7).

If the asynchronous enable (\overline{E}) is being used, the outputs may be disabled at any time by switching the enable to a logic HIGH, and may be returned to the active state by switching the enable to a logic LOW.

If the synchronous enable (\overline{E}_S) is being used, the outputs will go to the OFF or high-impedance state upon the next positive clock edge after the synchronous enable input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW, the subsequent positive clock edge will return the output to the active state. Following a positive clock edge, the address and synchronous enable inputs are free to change since no change in the output will occur until the next low-to-high transition of the clock. This unique feature allows the CY7C245A decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.

System timing is simplified in that the on-chip edge triggered register allows the PROM clock to be derived directly from the system clock without introducing race conditions. The on-chip register timing requirements are similar to those of discrete registers available in the market.

The CY7C245A has an asynchronous initialize input (\$\overline{INIT}\$). The initialize function is useful during power-up and time-out sequences and can facilitate implementation of other sophisticated functions such as a built-in "jump start" address. When activated, the initialize control input causes the contents of a user-programmed 2049th 8-bit word to be loaded into the

on-chip register. Each bit is programmable and the initialize function can be used to load any desired combination of 1s <u>and</u> 0s into the register. In the unprogrammed state, activating INIT will generate a register CLEAR (all outputs LOW). <u>If all</u> the bits of the initialize word are programmed, activating INIT performs a register PRESET (all outputs HIGH).

Applying a LOW to the $\overline{\text{INIT}}$ input causes an immediate load of the programmed initialize word into the master and slave flip-flops of the register, independent of all other inputs, including the clock (CP). The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable ($\overline{\text{E}}$) LOW.

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the 7C245A. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.

The recommended dose for erasure is ultraviolet light with a wavelength of 2537 Angstroms for a minimum dose (UV intensity multiplied by exposure time) of 25 Wsec/cm2. For an ultraviolet lamp with a 12 mW/cm2 power rating the exposure time would be approximately 35 minutes. The 7C245A needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high-intensity UV light for an extended period of time. 7258 Wsec/cm2 is the recommended maximum dosage.

Programming Information

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Bit Map Data

Programm	er Address	RAM Data
Decimal	Hex	Contents
0	0	Data
		•
2047	7FF	Data
2048	800	Init Byte
2049	801	Control Byte

Control Byte

- 00 Asynchronous output enable (default state)
- 01 Synchronous output enable

Document #: 38-04007 Rev. *E Page 2 of 13

Table 1. Mode Selection

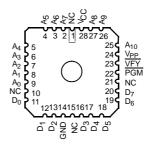

	Read or Output Disable	Pin Function ^[1]									
Mode	Read of Output Disable	A ₁₀ -A ₄	A ₃	A ₂ -A ₁	A ₀	CP	E, E _S	INIT	O ₇ -O ₀		
	Other	A ₁₀ -A ₄	A ₃	A ₂ -A ₁	A ₀	PGM	VFY	V _{PP}	D ₇ D ₀		
Read		A ₁₀ A ₄	A ₃	A ₂ A ₁	A ₀	V _{IL} /V _{IH}	V _{IL}	V _{IH}	O ₇ -O ₀		
Output Disable		A ₁₀ -A ₄	A ₃	A ₂ A ₁	A ₀	Х	V _{IH}	V _{IH}	High Z		
Initialize		A ₁₀ -A ₄	A ₃	A ₂ A ₁	A ₀	Х	V _{IL}	V _{IL}	Init. Byte		
Program	Program		A ₃	A ₂ A ₁	A ₀	V_{ILP}	V _{IHP}	V_{PP}	D ₇ D ₀		
Program Ver	ify	A ₁₀ -A ₄	A ₃	A ₂ A ₁	A ₀	V _{IHP}	V _{ILP}	V_{PP}	O ₇ -O ₀		
Program Inh	ibit	A ₁₀ -A ₄	A ₃	A ₂ A ₁	A ₀	V _{IHP}	V _{IHP}	V_{PP}	High Z		
Intelligent Program		A ₁₀ -A ₄	A ₃	A ₂ A ₁	A ₀	V _{ILP}	V _{IHP}	V_{PP}	D ₇ D ₀		
Program Synchronous Enable		A ₁₀ -A ₄	V_{IHP}	A ₂ -A ₁	V_{PP}	V _{ILP}	V _{IHP}	V_{PP}	High Z		
Program Initialization Byte		A ₁₀ -A ₄	V_{ILP}	A ₂ -A ₁	V_{PP}	V _{ILP}	V _{IHP}	V_{PP}	D ₇ D ₀		
Blank Check Zeros		A ₁₀ -A ₄	A ₃	A ₂ A ₁	A ₀	V _{IHP}	V_{ILP}	V_{PP}	Zeros		

Figure 1. Programming Pinouts

DIP Top View

LCC/PLCC (Opaque Only) Top View

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3

SMD Cross Reference

SMD Number	Suffix	Cypress Number
5962-88735	033X	CY7C245A-25LMB
5962-88735	04LX	CY7C245A-25DMB

Switching Characteristics

Parameter	Subgroups
t _{SA}	7, 8, 9, 10, 11
t _{HA}	7, 8, 9, 10, 11
t _{CO}	7, 8, 9, 10, 11

Note

1. X = "don't care" but not to exceed $V_{CC} + 5$ %.

Document #: 38-04007 Rev. *E

Page 3 of 13

Maximum Ratings^[2]

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Supply Voltage to Ground Potential (Pin 24 to Pin 12).....-0.5V to +7.0V DC Voltage Applied to Outputs in High Z State-0.5V to +7.0V DC Input Voltage-3.0V to +7.0V

DC Program Voltage (Pins 7, 18, 20)	13.0V
UV Erasure	7258 Wsec/cm ²
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Temperature	V _{CC}		
Commercial	0°C to +70°C	5V ±10%		
Military ^[3]	−55°C to +125°C	5V ±10%		
Industrial	-40°C to +85°C	5V ±10%		

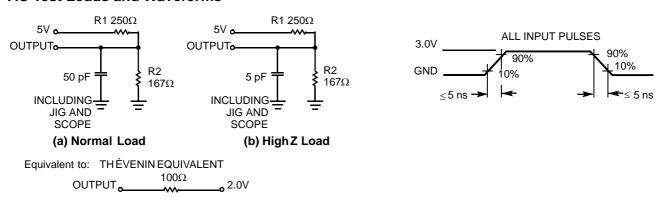
Electrical Characteristics Over the Operating Range^[4,5]

Parameter	Description	Test Co	7C24	5A-15	7C245A-18		7C245A-25 7C245A-35 7C245A-45		Unit	
			Min.	Max.	Min.	Max.	Min.	Max.		
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = V_{IN} = V_{IH} \text{ or } V_{IL}$	= -4.0 mA	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$		0.4		0.4		0.4	V	
V _{IH}	Input HIGH Level	Guaranteed Inp HIGH Voltage f	2.0	V _{CC}	2.0	V _{CC}	2.0	V _{CC}	V	
V _{IL}	Input LOW Level	Guaranteed Inp LOW Voltage for		0.8		0.8		0.8	V	
I _{IX}	Input Leakage Current	$GND \le V_{IN} \le V_{C}$	C C	-10	+10	-10	+10	-10	+10	μΑ
V_{CD}	Input Clamp Diode Voltage			N	ote 5					
I _{OZ}	Output Leakage Current	GND ≤ V _O ≤ V _C Disabled ^[6]	_C Output	-10	+10	-10	+10	-10	+10	μА
I _{OS}	Output Short Circuit Current	$V_{CC} = Max., V_{C}$	$_{\rm OUT} = 0.0V^{[7]}$	-20	-90	-20	-90	-20	-90	mΑ
I _{CC}	Power Supply Current	V _{CC} = Max.,	Com'l		120		120		90	mA
		$I_{OUT} = 0 \text{ mA}$	Mil				120		120	
V_{PP}	Programming Supply Voltage		•	12	13	12	13	12	13	V
I _{PP}	Programming Supply Current				50		50		50	mA
V_{IHP}	Input HIGH Programming Voltage			3.0		3.0		3.0		V
V_{ILP}	Input LOW Programming Voltage				0.4		0.4		0.4	V

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF

- 2. The voltage on any input or I/O pin cannot exceed the power pin during power-up.


- T_A is the "instant on" case temperature.
 See page 3 of this data sheet for Group A subgroup testing information.
 See the "Introduction to CMOS PROMs" section of the Cypress Data Book for general information on testing.
- 6. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.

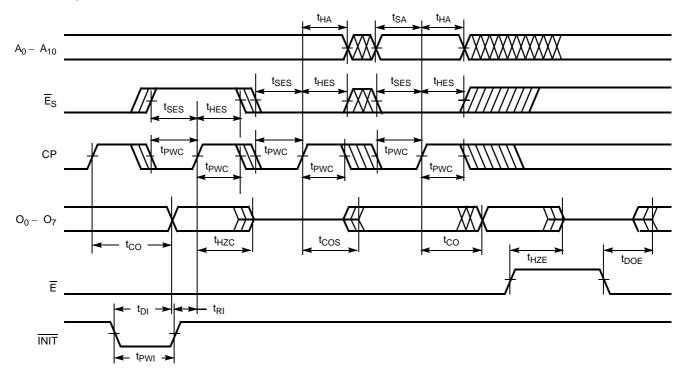
7. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

Document #: 38-04007 Rev. *E Page 4 of 13

AC Test Loads and Waveforms^[4, 5]

Switching Characteristics Over Operating Range^[4, 5]

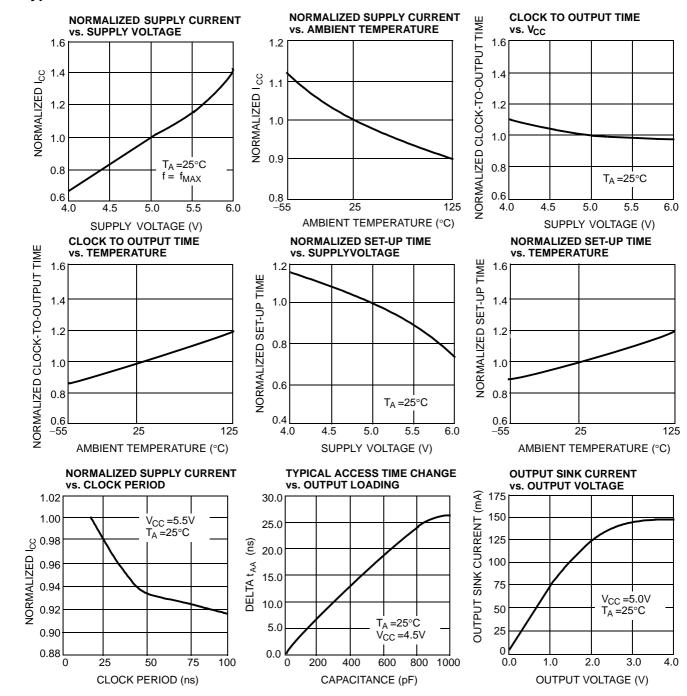
Parameter	Description	7C24	5A-15	7C24	5A-18	7C245A-35		7C245A-25		7C245A-35		Unit
Parameter	Description	Min. Max. Min. Ma		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Onit	
t _{SA}	Address Set-Up to Clock HIGH	15		18		25		35		45		ns
t _{HA}	Address Hold from Clock HIGH	0		0		0		0		0		ns
t _{CO}	Clock HIGH to Valid Output		10		12		12		15		25	ns
t _{PWC}	Clock Pulse Width	10		12		15		20		20		ns
t _{SES}	E _S Set-Up to Clock HIGH	10		10		12		15		15		ns
t _{HES}	E _S Hold from Clock HIGH	5		5		5		5		5		ns
t _{DI}	Delay from INIT to Valid Output		15		20		20		20		35	ns
t _{RI}	INIT Recovery to Clock HIGH	10		12		15		20		20		ns
t _{PWI}	INIT Pulse Width	10		12		15		20		25		ns
t _{COS}	Valid Output from Clock HIGH ^[8]		15		15		15		20		30	ns
t _{HZC}	Inactive Output from Clock HIGH ^[8]		15		15		15		20		30	ns
t _{DOE}	Valid Output from E LOW ^[9]		12		15		15		20		30	ns
t _{HZE}	Inactive Output from E HIGH ^[9]		15		15		15		20		30	ns


Notes

Document #: 38-04007 Rev. *E Page 5 of 13

^{8.} Applies only when the synchronous (\overline{E}_S) function is used. 9. Applies only when the asynchronous (\overline{E}) function is used.

Switching Waveforms^[5]



Document #: 38-04007 Rev. *E

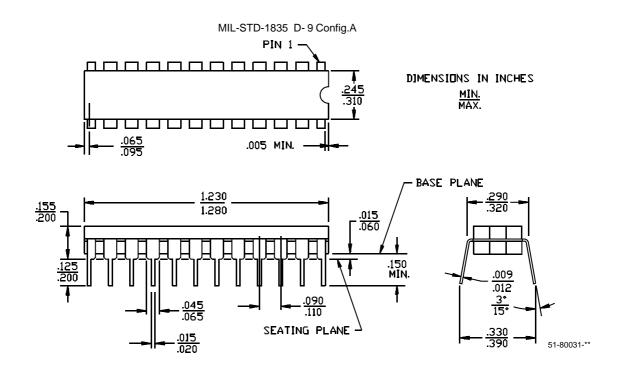
[+] Feedback

Typical DC and AC Characteristics

Ordering Information

Spee	d (ns)	I _{CC}	Ordering	Package	Package Type	Operating
t _{SA}	t _{CO}	(mA)	Code	Туре	rackage Type	Range
15	10	120	CY7C245A-15JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
15	10	120	CY7C245A-15JI	J64	28-Lead Plastic Leaded Chip Carrier	Industrial
18	12	120	CY7C245A-18QMB	Q64	28-Pin Windowed Leadless Chip Carrier	Military

Document #: 38-04007 Rev. *E Page 7 of 13



Ordering Information (continued)

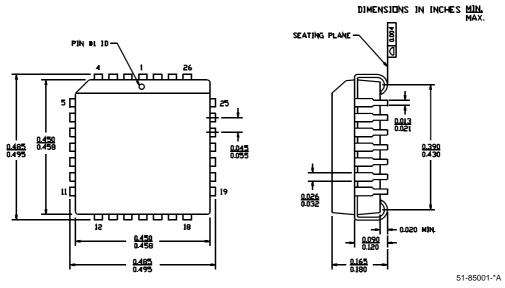
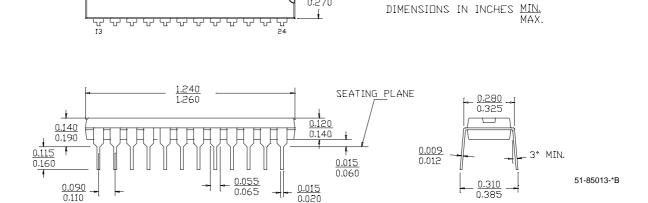
Spee	Speed (ns)		Ordering	Package	Package Type	Operating
t _{SA}	t _{CO}	(mA)	Code	Type	rackage Type	Range
18	12	120	CY7C245A-18WMB	W14	24-Lead (300-Mil) Windowed CerDIP	Military
25	15	60	CY7C245A-25PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
25	15	90	CY7C245A-25JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
35	20	60	CY7C245A-35WC	W14	24-Lead (300-Mil) Windowed CerDIP	Commercial
		120	CY7C245A-35QMB	Q64	28-Pin Windowed Leadless Chip Carrier	Military

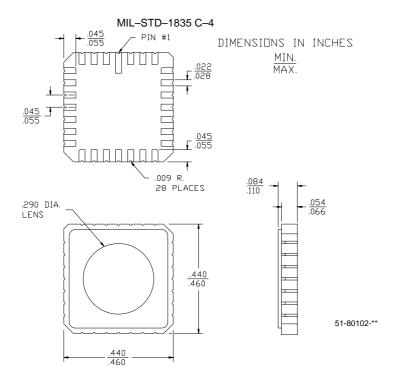
Package Diagrams

Figure 2. 24-Lead (300-Mil) CerDIP D14

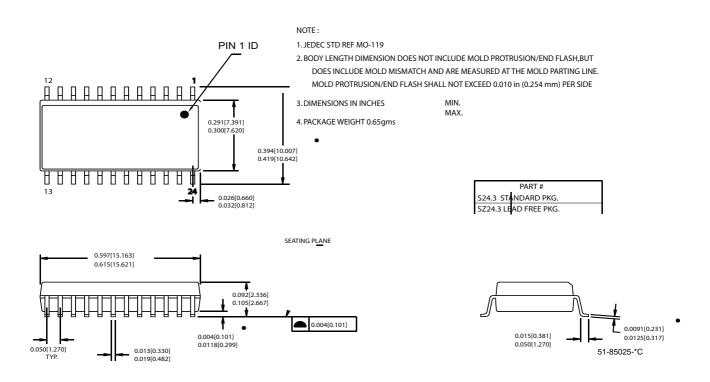
Document #: 38-04007 Rev. *E Page 8 of 13

Figure 3. 28-Lead Plastic Leaded Chip Carrier J64

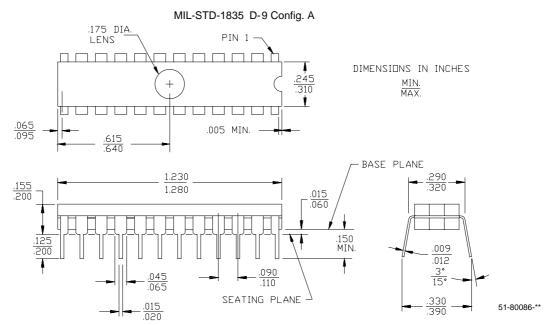




Figure 4. 24-Lead (300-Mil) PDIP P13

Document #: 38-04007 Rev. *E Page 9 of 13


Figure 5. 28-Pin Windowed Leadless Chip Carrier Q64

Document #: 38-04007 Rev. *E Page 10 of 13


Figure 6. 24-Lead (300-Mil) SOIC S13

Document #: 38-04007 Rev. *E Page 11 of 13

Figure 7. 24-Lead (300-Mil) Windowed CerDIP W14

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document #: 38-04007 Rev. *E

Page 12 of 13

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	113863	3/6/02	DSG	Changed from Spec number: 38-00074 to 38-04007
*A	118894	10/09/02	GBI	Updated ordering information
*B	122248	12/27/02	RBI	Added power-up requirements to Operating Conditions information
*C	130688	10/30/03	LSY	Added CY7C245A-15JI part number
*D	130942	11/10/03	KKV	Minor change: soft copy became corrupted after sign off and before Tecl Pubs. Replaced with correct copy
*E	499542	See ECN	PCI	Updated ordering information

Document #: 38-04007 Rev. *E Page 13 of 13