FEATURES

4 Complete 12-Bit D/A Functions

Double-Buffered Latches
Simultaneous Update of All DACs Possible ± 5 V Output Range
High Stability Bandgap Reference
Monolithic BiMOS Construction
Guaranteed Monotonic over Temperature
3/4 LSB Linearity Guaranteed over Temperature
$4 \mu \mathrm{~s}$ max Settling Time to 0.01\%
Operates with ± 12 V Supplies
Low Power: $\mathbf{7 2 0} \mathbf{~ m W}$ max Including Reference
TTL/ 5 V CMOS Compatible Logic Inputs
8-Bit Microprocessor Interface
24-Pin PDIP or 28-Lead PLCC Package

PRODUCT DESCRIPTION

The AD 75004 contains four complete, voltage output, 12-bit digital-to-analog converters, a high stability bandgap reference, and double-buffered input latches on a single chip. The converters use 12 precision high speed bipolar current steering switches and laser-trimmed thin-film resistor networks to provide fast settling time and high accuracy.
M icroprocessor compatibility is achieved by the on-chip double-buffered latches. The design of the input latches allows direct interface to 8 -bit buses. The 12 bits of data from the first rank of latches can then be transferred to the second rank, avoiding generation of spurious analog output values. The latch responds to strobe pulses as short as 50 ns , allowing use with fast microprocessors.
The functional completeness and high performance of the AD 75004 results from a combination of advanced switch design, the BiM OS II fabrication process, and proven laser trimming technology. BiM OS II is an epitaxial BiCM OS process optimized for analog and converter functions. The AD 75004 is trimmed at the wafer level and is specified to $\pm 1 / 2$ LSB maximum linearity error at $25^{\circ} \mathrm{C}$ and $\pm 3 / 4 \mathrm{LSB}$ over the full operating temperature range. The on-chip output amplifiers provide an output range of $\pm 5 \mathrm{~V}$, with 1 LSB equal to 2.44 mV .

REV. A

[^0]
FUNCTIONAL BLOCK DIAGRAM

The bandgap reference on the chip has low noise, long term stability and temperature drift characteristics comparable to discrete reference diodes. The absolute value of the reference is laser trimmed to +5.00 V with 0.6% maximum error. Its temperature coefficient is also laser trimmed.
Typical full-scale gain TC is $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. With guaranteed monotonicity over the full temperature range, the AD 75004 is well suited for wide temperature range performance.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

AD75004-SPECIFICATONS

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \pm 12.0 \mathrm{~V}$ power supplies unless otherwise noted)

Parameter	Symbol	Min	Typ	Max	Units		
```DIGITAL INPUTS (D0-D 7, A0-A3, \(\overline{C S}, \overline{\mathrm{WR}}\) ) Logic Levels (TTL Compatible) Input Voltage, Logic " 1 " Input Voltage, Logic " 0 " Input C urrent, \(\mathrm{V}_{\mathrm{IH}}=5.5 \mathrm{~V}\) Input C urrent, \(\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}\) Input Capacitance```	$\begin{aligned} & V_{I H} \\ & V_{I L} \\ & I_{I H} \\ & I_{I L} \\ & C_{I N} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 0 \end{aligned}$		$\begin{aligned} & 5.5 \\ & \mathbf{0 . 8} \\ & \mathbf{1 0} \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$		
ACCURACY   Resolution   Integral Linearity Error   Integral Linearity Error, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$   Differential Linearity Error   Differential Linearity Error, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$   G ain (Full-Scale) Error ${ }^{1}$   Gain Error Drift, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}{ }^{1}$   Bipolar Zero Error ${ }^{1}$   Bipolar Zero Error Drift, $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}{ }^{1}$			$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 2 \\ & \pm 1 / 2 \\ & \text { eed M } \\ & \pm 2 \\ & \pm 15 \\ & \pm 1 \\ & \pm 3 \end{aligned}$	$\begin{aligned} & 12 \\ & \pm 1 / 2 \\ & \pm 3 / 4 \\ & \pm 3 / 4 \\ & \pm 10 \\ & \pm 30 \\ & \pm \mathbf{2} \\ & \pm 7 \end{aligned}$	$\begin{aligned} & \mathrm{B} \text { its } \\ & \mathrm{LSB} \\ & \mathrm{LSB} \\ & \mathrm{LSB} \\ & \\ & \mathrm{LSB} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{LSB} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		
```CHANNEL-TO-CHANNEL MISMATCH Integral Linearity Error G ain Error}\mp@subsup{}{}{1 Bipolar Zero Error }\mp@subsup{}{}{1```			$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 4 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$		
DYNAMIC PERFORM ANCE Settling T ime to $\pm 0.01 \%$ of F SR for FSR C hange, $2 \mathrm{k} \Omega$ \|	500 pF L oad Slew Rate, $2 \mathrm{k} \Omega \\| 500 \mathrm{pF}$ Load Digital Input C rosstalk (Static) ${ }^{2}$		5		4 -50	$\mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{S}$ dB	
ANALOG OUTPUTS Full-Scale Range (FSR) Output Current Short Circuit Limit C urrent	$\begin{aligned} & \text { V OUT }^{\text {OUT }} \\ & \text { I }_{\text {aU }} \end{aligned}$	± 5	± 5	± 40	V mA mA		
VOLTAGE REFERENCE R eference Output Voltage T emperature Coefficient Reference Output Currents ${ }^{3}$ Reference Input Voltage Reference Input Current @ 5.0 V	$V_{\text {REFOUT }}$ $V_{\text {REFIN }}$ $I_{\text {REFIN }}$	$\begin{aligned} & 4.97 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.00 \\ & \pm 15 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.03 \\ & \pm 25 \\ & \\ & 5.5 \\ & 3.0 \end{aligned}$	V ppm $/{ }^{\circ} \mathrm{C}$ mA V mA		
POWER SUPPLY GAIN SENSITIVITY $\Delta \mathrm{G}$ ain $/ \Delta \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=+10.8$ to $+13.2 \mathrm{~V} \mathrm{dc}{ }^{1}$ $\Delta \mathrm{G}$ ain $/ \Delta \mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{SS}}=-10.8$ to $-13.2 \mathrm{~V} \mathrm{dc}{ }^{1}$			$\begin{aligned} & \pm 15 \\ & \pm 15 \end{aligned}$	$\begin{aligned} & \pm 25 \\ & \pm 25 \end{aligned}$	ppm of FSR/\% ppm of FSR/\%		
POWER SUPPLY REQUIREMENTS Voltage R ange Supply Currents	$\begin{aligned} & V_{D D}, V_{S S} \\ & I_{D D}, I_{S S} \end{aligned}$	± 10.8	$\begin{aligned} & \pm 12 \\ & \pm 25 \end{aligned}$	$\begin{aligned} & \pm 13.2 \\ & \pm 30 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$		
TEM PERATURE RANGE Specification Storage	$\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$	$\begin{aligned} & 0 \\ & -65 \end{aligned}$		$\begin{aligned} & +70 \\ & +150 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$		

NOTES

${ }^{1} \mathrm{G}$ ain and bipolar zero errors are measured using internal voltage reference and include its errors.
${ }^{2}$ D igital crosstalk is defined as the change in any one output's steady state value as a result of any other output being driven from $\mathrm{V}_{\text {OUtmin }}$ to $\mathrm{V}_{\text {OUtmax }}$ into a
$2 \mathrm{k} \Omega \| 500 \mathrm{pF}$ load by means of varying the digital input code.
${ }^{3}$ T he internal voltage reference is intended to drive on-chip only; buffer it if using it externally.
${ }^{4}$ All minimum and maximum specifications are guaranteed, and specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels.
Specifications subject to change without notice.

TIMING CHARACTERISTICS ${ }^{1}$

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \pm 12.0 \mathrm{~V}$ power supplies unless otherwise noted)

Parameter	Symbol	Min	Units
Address Setup Time	t_{1}	30	ns
Address H old Time	t_{2}	10	ns
D ata Setup T ime	t_{3}	10	ns
D ata H old Time	t_{4}	45	ns
Chip Select to Write Setup T ime	t_{5}	0	ns
Write to Chip Select H old Time	t_{6}	0	ns
Write Pulse Width	t_{7}	50	ns

NOTES

${ }^{1} \mathrm{~T}$ iming measurement reference level is 1.5 V .
Specifications subject to change without notice

TRUTH TABLE

Control and Address Lines						Operation
$\overline{\mathrm{CS}}$	WR	A3	A2	A1	A0	
1	X	X	X	X	X	No operation
X	1	X	X	X	X	No operation
0	0	0	0	A1*	A0*	$8 \mathrm{LSBs} \rightarrow$ one input latch
0	0	0	1	A1*	A0*	$4 \mathrm{MSBs} \rightarrow$ one input latch
0	0	1	0	A1*	A0*	U pdate one DAC latch
0	0	1	1	X	X	U pdate all 4 DAC latches

NOTE

*T he A1 and A0 inputs specify the relevant channel.

A1	A0	Channel
0	0	0
0	1	1
1	0	2
1	1	3

ABSOLUTE MAXIMUM RATINGS*

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

	Min	Max	Units	Conditions
$V_{D D}$ to DGND	-0.3	+18	V	
$\mathrm{~V}_{\text {SS }}$ to DGND	-18	+0.3	V	
$\mathrm{~V}_{\text {DD }}$ to $\mathrm{V}_{S S}$	-0.3	+26.4	V	
$\mathrm{~V}_{\text {REFIN }}$ to AGND	-0.3	$\mathrm{~V}_{\mathrm{DD}}$	V	
Digital Inputs to DGND	-0.3	$\mathrm{~V}_{\mathrm{DD}}$	V	
AGND to D GND	-0.3	+0.3	V	
Short to AGND on Analog Outputs		Indefinite	seC	
Power Dissipation		1.0	W	$\mathrm{~T}_{\mathrm{A}} \leq 75^{\circ} \mathrm{C}$
Specification Temperature Range	0	+70	${ }^{\circ} \mathrm{C}$	
Storage Temperature	-65	+150	${ }^{\circ} \mathrm{C}$	
Lead T emperature		+300	${ }^{\circ} \mathrm{C}$	Soldering, 10 seconds

*Stresses above thoselisted under "A bsoluteM aximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposureto absolutemaximum rating conditions for extended periods may affect device reliability.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 75004 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Model	Temperature Range	Package Option*
$A D 75004 \mathrm{~K} \mathrm{~N}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{N}-24 \mathrm{~A}$
AD 75004 KP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{P}-28 \mathrm{~A}$

*N = Plastic DIP; P = Plastic Leaded Chip C arrier.

PIN DESCRIPTIONS

$\begin{aligned} & \text { PLCC } \\ & \text { Pin } \end{aligned}$	Plastic DIP Pin	Name	Description
1	1	D 7	D ata Input Bit 7
2	2	D6	D ata Input Bit 6
3	3	D 5	D ata Input Bit 5
5	4	D 4	D ata Input Bit 4
6	5	D 3	D ata Input Bit 3 or 11 (M SB)
7	6	D 2	D ata Input Bit 2 or 10
9	7	D 1	D ata Input Bit 1 or 9
10	8	D0	D ata Input Bit 0 (LSB) or 8
11	9	$\overline{\text { CS }}$	C hip Select Input; Active Low
13	10	WR	W rite Input; Active Low
14	11	A3	Address Input Bit 3 (M SB)
15	12	A2	Address Input Bit 2
16	13	A1	Address Input Bit 1
17	14	A0	Address Input Bit 0 (LSB)
18	15	DGND	Digital Ground
19	16	AGND	A nalog G round
20	17	$V_{\text {SS }}$	-12 V Power Supply
21	18	$V_{\text {Refout }}$	+5 V R eference O utput
22	19	$\mathrm{V}_{\text {REfin }}$	R eference Input
23	20	Vouto	A nalog Output 0
24	21	Vout1	A nalog Output 1
26	22	Vout2	A nalog Output 2
27	23	Vout3	A nalog Output 3
28	24	$V_{\text {DD }}$	+12 V Power Supply
4	-	NC	No Internal C onnection
8	-	NC	N o Internal C onnection
12	-	NC	N o Internal Connection
25	-	NC	No Internal Connection

BINARY CODE TABLE

Twos Complement Value in DAC Analog Output Voltage M SB	LSB		
0111	1111	1111	$(2047 / 2048) * V_{\text {REFIN }}$
0000	0000	0001	$(1 / 2048) * V_{\text {REFIN }}$
0000	0000	0000	0 V
1111	1111	1111	$-(1 / 2048) * V_{\text {REFIN }}$
1000	0000	0000	$-V_{\text {REFIN }}$

PIN CONFIGURATIONS
24-Pin Plastic DIP

28-Pin PLCC

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

