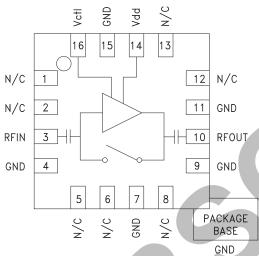


v00.0308


GaAs PHEMT MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 4.8 - 6.0 GHz

Typical Applications

The HMC604LP3 / HMC604LP3E is ideal for:

- WiMAX/C-band Radio
- Fixed Wireless
- Tower Mounted Amplifiers
- Public Safety Infrastructure
- · Telematics & DSRC

Functional Diagram

Features

Noise Figure: 1.5 dB Output IP3: +26 dBm

Gain: 15 dB

Integrated Low Loss LNA Bypass Path

Single Supply: +3V or +5V

50 Ohm Matched Output/Input

16 Lead 3x3mm QFN Package: 9 mm²

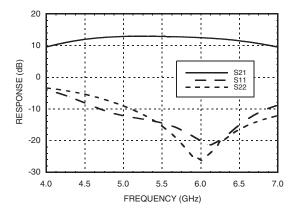
General Description

The HMC604LP3(E) is a versatile, high dynamic range GaAs MMIC Low Noise Amplifier that integrates a low loss LNA bypass mode on the IC. The amplifier is ideal for WiMAX & C-band Radio receivers operating between 4.8 and 6.0 GHz and provides 1.5 dB noise figure, 15 dB of gain and +26 dBm IP3 from a single supply of +5V @ 42mA. Input and output return losses are 12 and 14 dB respectively with no external matching components required. A single control line (0/Vdd) is used to switch between LNA mode and a low loss bypass mode which reduces the current consumption to 10 μA .

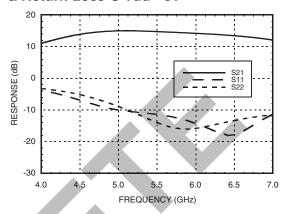
Electrical Specifications, T_A = +25° C

	A												
			Vdd =	= +3V					Vdd =	= +5V			
Parameter	l	NA Mod	le	Ву	pass Mo	ode	L	NA Mod	le	Ву	pass Mo	ode	Units
	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range			4.8	- 6.0					4.8	- 6.0			GHz
Gain	10	12.5		-3	-2		13	15		-3	-2		dB
Gain Variation Over Temperature		0.026			0.002			0.026			0.002		dB/°C
Noise Figure		1.6	2.1		2			1.5	2		2		dB
Input Return Loss		14			20			12			20		dB
Output Return Loss		15			20			14			20		dB
Reverse Isolation		28			-			30			-		dB
Power for 1dB Compression (P1dB)*		10			24			14			24		dBm
Saturated Output Power (Psat)		10.5			25			14.5			25		dBm
Third Order Intercept (IP3)* (-20 dBm Input Power per tone, 1 MHz tone spacing)		21			23			26			23		dBm
Supply Current (Idd)		17	25		0.01			42	55		0.01		mA
Switching LNA Mode to Bypass Mode		7						6					ns
Speed Bypass Mode to LNA Mode					50						150		ns

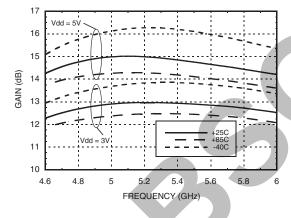
^{*} P1dB and IP3 for LNA Mode are referenced to RFOUT while P1dB for Bypass Mode is referenced to RFIN.

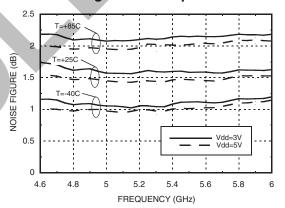


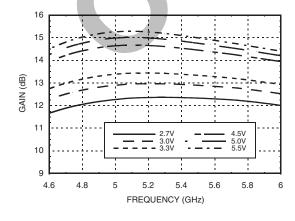
v00.0308

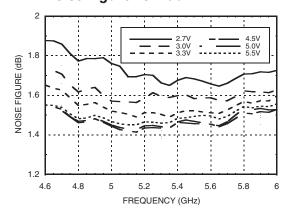


GaAs PHEMT MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 4.8 - 6.0 GHz


LNA Broadband Gain & Return Loss @ Vdd= 3V

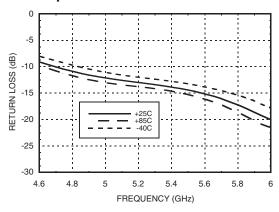

LNA Broadband Gain & Return Loss @ Vdd= 5V


LNA Gain vs. Temperature

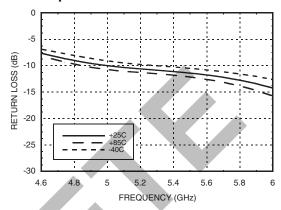

LNA Noise Figure vs. Temperature

LNA Gain vs. Vdd

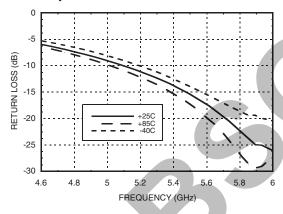
LNA Noise Figure vs. Vdd

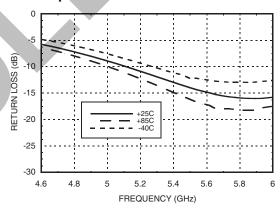


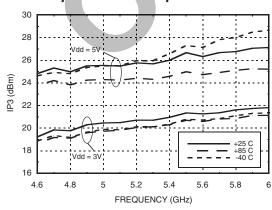
v00.0308 **§√**

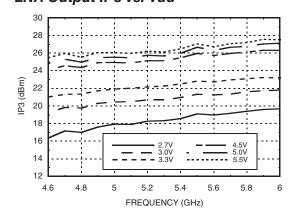


GaAs PHEMT MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 4.8 - 6.0 GHz


LNA Input Return Loss vs. Temperature @ Vdd= 3V

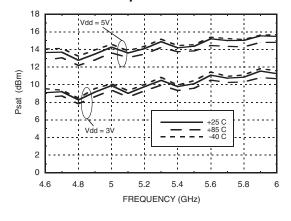

LNA Input Return Loss vs. Temperature @ Vdd= 5V


LNA Output Return Loss vs. Temperature @ Vdd= 3V

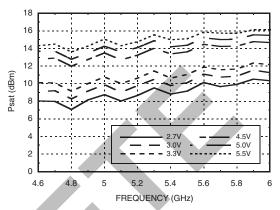

LNA Output Return Loss vs. Temperature @ Vdd= 5V

LNA Output IP3 vs. Temperature

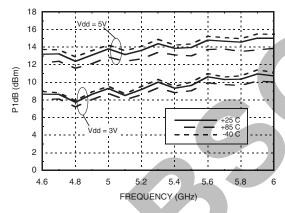
LNA Output IP3 vs. Vdd

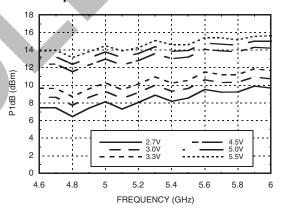


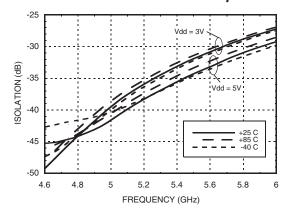
v00.0308



GaAs PHEMT MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 4.8 - 6.0 GHz

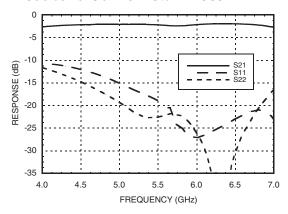

LNA Psat vs. Temperature


LNA Psat vs. Vdd

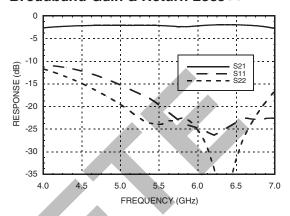

LNA Output P1dB vs. Temperature

LNA Output P1dB vs. Vdd

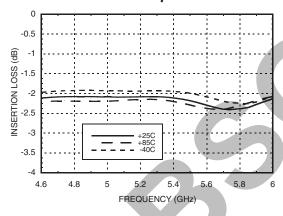
LNA Reverse Isolation vs. Temperature

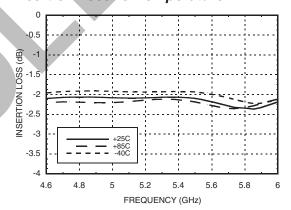


v00.0308



GaAs PHEMT MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 4.8 - 6.0 GHz

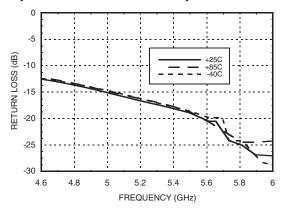

Bypass Mode Broadband Gain & Return Loss [1]


Bypass Mode Broadband Gain & Return Loss [2]

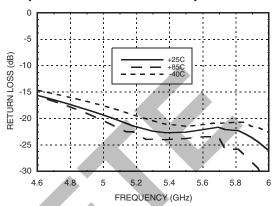
Bypass Mode Insertion Loss vs. Temperature [1]

Bypass Mode Insertion Loss vs. Temperature [2]

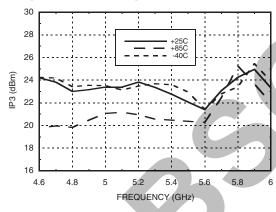
[1] Vdd = 3V [2] Vdd = 5V

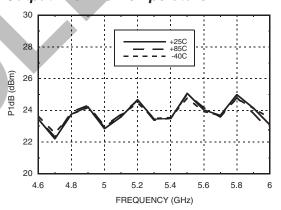


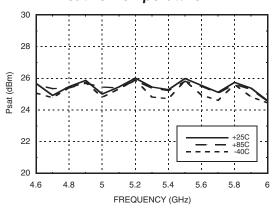
v00.0308



GaAs PHEMT MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 4.8 - 6.0 GHz


Bypass Mode Input Return Loss vs. Temperature [1]


Bypass Mode Output Return Loss vs. Temperature [1]


Bypass Mode Output IP3 vs. Temperature [1]

Bypass Mode Output P1dB vs. Temperature [1]

Bypass Mode Psat vs. Temperature [1]

[1] Vdd = 3V or Vdd = 5V

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

v00.0308

GaAs PHEMT MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 4.8 - 6.0 GHz

Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	+8 Vdc
RF Input Power (RFIN) LNA Mode (Vdd = +5.0 Vdc) Bypass Mode	+15 dBm +30 dBm
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 13 mW/°C above 85 °C)	850 mW
Thermal Resistance (channel to ground paddle)	76.9 °C/W
Storage Temperature	-65 to +150° C
Operating Temperature	-40 to +85° C

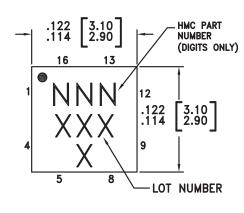
ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

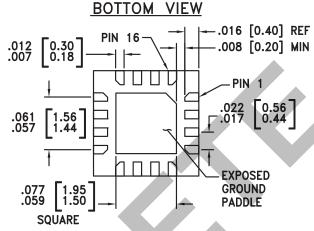
Typical Supply Current vs. Vdd

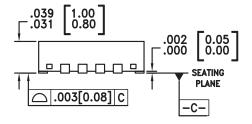
Vdd (Vdc)	ldd (mA)
+2.7	13
+3.0	17
+3.3	21
+4.5	37
+5.0	42
+5.5	46

Truth Table

LNA Mode	Vctl= Vdd
Bypass Mode	Vctl= 0V




v00.0308



GaAs PHEMT MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 4.8 - 6.0 GHz

Outline Drawing

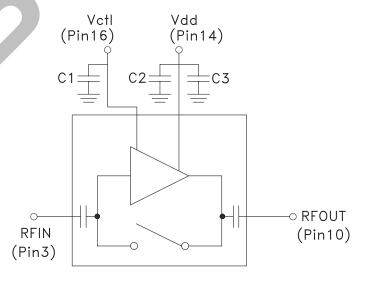
NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
- PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC604LP3	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	604 XXXX
HMC604LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	604 XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX


GaAs PHEMT MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 4.8 - 6.0 GHz

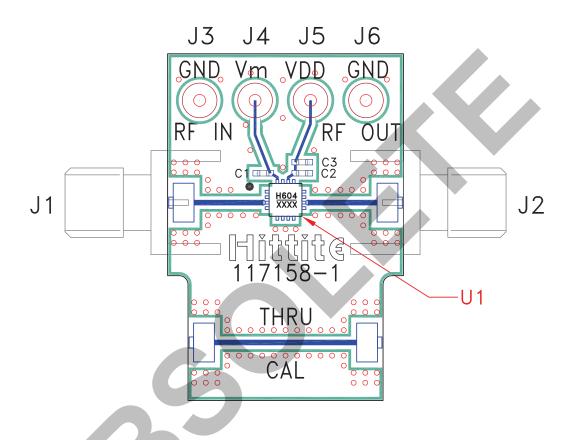
Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 5, 6, 8, 12	N/C	No connection necessary. These pins may be connected to RF/DC ground.	
3	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN O
4, 7, 9, 11, 15	GND	These pins must be connected to RF/DC ground.	GND
10	RFOUT	This pin is AC coupled and matched to 50 Ohms.	→ → RFOUT
14	Vdd	Power supply voltage. Bypass capacitors are required. See application circuit.	Vdd
16	Vctl	LNA/Bypass Mode Control Voltage. See truth table.	Vetlo

Application Circuit

Components	Value
C1, C2	100pF
C3	10KpF

ANALOGDEVICES


HMC604LP3 / 604LP3E

v00.0308

GaAs PHEMT MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 4.8 - 6.0 GHz

Evaluation PCB

List of Materials for Evaluation PCB 117160 [1]

Item	Description		
J1 - J2	PCB Mount SMA RF Connector		
J3 - J6	DC Pin		
C1, C2	100 pF Capacitor, 0402 Pkg.		
C3	10 KpF Capacitor, 0402 Pkg.		
U1	HMC604LP3 / HMC604LP3E Amplifier		
PCB [2]	117158 Evaluation Board		

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.