

12-Channel, High Performance, Differential Output, 192 kHz, 24-Bit DAC

Data Sheet ADAU1962

FEATURES

118 dB DAC dynamic range

-98 dB THD + N

Differential voltage DAC output

2.5 V digital, 5 V analog, and 3.3 V or 5 V input/output supplies

421 mW total quiescent power dissipation

PLL generated or direct master clock

Low EMI design

Linear regulator driver to generate digital supply

Supports 24-bit and 32 kHz to 192 kHz sample rates

Low propagation 192 kHz sample rate mode

Log volume control with autoramp function

Temperature sensor with digital readout: ±3°C accuracy

SPI and I²C controllable for flexibility

Software-controllable clickless mute

Software power-down

Right justified, left justified, I2S, and TDM modes

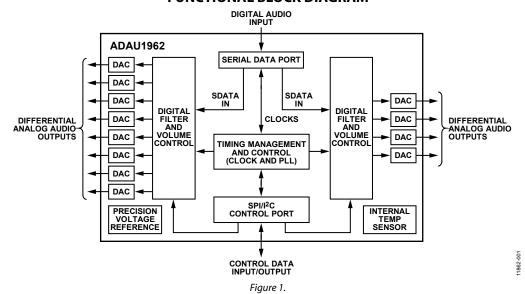
Master and slave modes with up to 12-channel input/output

80-lead LQFP package

Qualified for automotive applications

APPLICATIONS

Automotive audio systems Home theater systems Digital audio effects processors


GENERAL DESCRIPTION

The ADAU1962 is a high performance, single chip, digital-to-analog converter (DAC) that provides 12 DACs with differential outputs using the Analog Devices, Inc., patented multibit sigma-delta (Σ - Δ) architecture. A SPI/I²C port is included, allowing a microcontroller to adjust volume and many other parameters. The ADAU1962 operates from 2.5 V digital, 5 V analog and 3.3 V or 5 V input/output supplies. A linear regulator is included to generate the digital supply voltage from the analog supply voltage.

The ADAU1962 is designed for low electromagnetic interference (EMI), evident in both the system and circuit design architectures. By using the on-board phase-locked loop (PLL) to derive the internal master clock from an external left right frame clock (LRCLK)/frame clock, the ADAU1962 eliminates the need for a separate high frequency master clock and can be used with or without a bit clock. The DACs are designed using the latest Analog Devices continuous time architectures to further minimize EMI. By using 2.5 V digital supplies, power consumption is minimized and the digital waveforms are of a smaller amplitude, further reducing emissions.

The ADAU1962 is available in an 80-lead LQFP package. Note that throughout this data sheet, multifunction pins, such as SCLK/SCL/SA, are referred to by the entire pin name or by a single function of the pin, for example, SCLK, when only that function is relevant.

FUNCTIONAL BLOCK DIAGRAM

Rev. A

Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2013–2016 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com

TABLE OF CONTENTS

Features					
Applications1					
General Description1					
Functional Block Diagram1					
Revision History					
Specifications					
Analog Performance Specifications					
Crystal Oscillator Specifications					
Digital Input/Output Specifications5					
Power Supply Specifications					
Digital Filters6					
Timing Specifications6					
Absolute Maximum Ratings 8					
Thermal Resistance					
ESD Caution					
Pin Configuration and Function Descriptions9					
Typical Performance Characteristics					
Test Circuits					
Theory of Operation14					
Digital-to-Analog Converters (DACs)14					
Clock Signals					
Power-Up and Reset					
Standalone Mode					
I ² C Control Port					
Serial Control Port: SPI Mode					
Power Supply and Voltage Reference					
Serial Data Ports—Data Format					
Time Division Multiplexed (TDM) Modes20					
Temperature Sensor					
Additional Modes23					
Register Summary24					
Register Details					
PLL and Clock Control 0 Register25					
REVISION HISTORY					
3/16—Rev. 0 to Rev. A					
· · · · · · · · · · · · · · · · · · ·					

	PLL and Clock Control 1 Register	26
	Block Power-Down and Thermal Sensor Control 1 Register	r
		27
	Power-Down Control 2 Register	28
	Power-Down Control 3 Register	29
	Thermal Sensor Temperature Readout Register	29
	DAC Control 0 Register	30
	DAC Control 1 Register	31
	DAC Control 2 Register	32
	DAC Individual Channel Mutes 1 Register	33
	DAC Individual Channel Mutes 2 Register	34
	Master Volume Control Register	35
	DAC1 Volume Control Register	35
	DAC2 Volume Control Register	36
	DAC3 Volume Control Register	36
	DAC4 Volume Control Register	37
	DAC5 Volume Control Register	37
	DAC6 Volume Control Register	38
	DAC7 Volume Control Register	38
	DAC8 Volume Control Register	39
	DAC9 Volume Control Register	39
	DAC10 Volume Control Register	40
	DAC11 Volume Control Register	40
	DAC12 Volume Control Register	41
	Common Mode and Pad Strength Register	41
	DAC Power Adjust 1 Register	42
	DAC Power Adjust 2 Register	43
	DAC Power Adjust 3 Register	44
P	ackaging and Ordering Information	48
	Outline Dimensions	48
	Ordering Guide	48
	Automotive Products	48

3/16—Rev. 0 to Rev. A	
Changes to Table 4	5

12/13—Revision 0: Initial Version

SPECIFICATIONS

Performance of all channels is identical, exclusive of the interchannel gain mismatch and interchannel phase deviation specifications. Master clock = 12.288 MHz (48 kHz f_s , 256 × f_s mode), input sample rate = 48 kHz, measurement bandwidth = 20 Hz to 20 kHz, word width = 24 bits, load capacitance (digital output) = 20 pF, load current (digital output) = ± 1 mA or 1.5 k Ω to ½ DVDD supply, input voltage high = 2.0 V, input voltage low = 0.8 V, analog audio output resistive load = 3100 Ω per pin, unless otherwise noted.

ANALOG PERFORMANCE SPECIFICATIONS

Specifications guaranteed at AVDDx = 5 V, DVDD = 2.5 V, and an ambient temperature (T_A) at 25°C, unless otherwise noted.

Table 1.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
DIGITAL-TO-ANALOG CONVERTERS					
Dynamic Range	20 Hz to 20 kHz, –60 dB input				
No Filter (RMS)		105	115.5		dB
With A-Weighted Filter (RMS)		108	118		dB
Total Harmonic Distortion + Noise (THD + N)	Two channels running, –1 dBFS		-98	-85	dB
	All channels running, -1 dBFS		-98	-85	dB
Full-Scale Differential Output Voltage			3.00 (8.48)		V rms (V p-p)
Gain Error		-10		+10	%
Offset Error		-25	-6	+25	mV
Gain Drift		-30		+30	ppm/°C
Interchannel Isolation			100		dB
Interchannel Phase Deviation			0		Degrees
Volume Control					
Step			0.375		dB
Range			95.25		dB
De-Emphasis Gain Error				±0.6	dB
Output Resistance at Each Pin			33		Ω
REFERENCE VOLTAGES					
Temperature Sensor Reference Voltage	TS_REF pin		1.50		V
Common-Mode Reference Output	CM pin	2.14	2.25	2.29	V
External Reference Voltage Source	CM pin	2.14	2.25	2.29	V
TEMPERATURE SENSOR					
Temperature Accuracy		-3		+3	°C
Temperature Readout					
Range		-60		+140	°C
Step Size			1		°C
Temperature Sample Rate		0.25		6	Hz
REGULATOR					
Input Supply Voltage	VSUPPLY pin	3.0	5	5.5	V
Regulated Output Voltage	VSENSE pin	2.26	2.50	2.59	V

 $^{^{1}}$ Functionally guaranteed at -40° C to $+125^{\circ}$ C case temperature.

Specifications guaranteed at AVDDx = 5 V, DVDD = 2.5 V, and an ambient temperature (T_A) at 105°C, unless otherwise noted.

Table 2.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
DIGITAL-TO-ANALOG CONVERTERS					
Dynamic Range	20 Hz to 20 kHz, –60 dB input				
No Filter (RMS)		109	113.5		dB
With A-Weighted Filter (RMS)		110.5	116		dB
Total Harmonic Distortion + Noise (THD + N)	Two channels running, –1 dBFS		-92.5	-85	dB
	All channels running, –1 dBFS		-92.5	-85	dB
Full-Scale Differential Output Voltage			3.00 (8.48)		V rms (V p-p)
Gain Error		-10		+10	%
Offset Error		-25	-6	+25	mV
Gain Drift		-30		+30	ppm/°C
Interchannel Isolation			100		dB
Interchannel Phase Deviation			0		Degrees
Volume Control					
Step			0.375		dB
Range			95.25		dB
De-Emphasis Gain Error				±0.6	dB
Output Resistance at Each Pin			33		Ω
REFERENCE					
Temperature Sensor Reference Voltage	TS_REF pin		1.50		V
Common-Mode Reference Output	CM pin	2.14	2.25	2.29	V
External Reference Voltage Source	CM pin	2.14	2.25	2.29	V
REGULATOR					
Input Supply Voltage	VSUPPLY pin	3.0	5	5.5	V
Regulated Output Voltage	VSENSE pin	2.25	2.50	2.55	V

 $^{^{1}}$ Functionally guaranteed at -40°C to $+125^{\circ}\text{C}$ case temperature.

CRYSTAL OSCILLATOR SPECIFICATIONS

Table 3.

Parameter	Min	Тур	Max	Unit
TRANSCONDUCTANCE				
$T_A = 25^{\circ}C$	6.4	7 to 10	14	mmhos
$T_A = 105$ °C	5.2	7.5 to 8.5	12	mmhos

DIGITAL INPUT/OUTPUT SPECIFICATIONS

 $-40^{\circ}\text{C} < T_{\text{A}} < +105^{\circ}\text{C}, \text{ IOVDD}$ = 5.0 V, and 3.3 V \pm 10%, unless otherwise noted.

Table 4.

Parameter	Symbol	Test Conditions/Comments	Min	Тур Мах	Unit
INPUT VOLTAGE					
Voltage Level					
High	V _{IH}		0.7 × IOVDD		V
Low	V _{IL}			0.3 × I	OVDD V
Input Leakage		I_{IH} at $V_{IH} = 3.3 \text{ V}$		10	μΑ
		I_{IL} at $V_{IL} = 0 V$		10	μΑ
INPUT CAPACITANCE				5	pF
OUTPUT VOLTAGE					
Voltage Level					
High	V _{OH}	I _{OH} = 1 mA	0.8 × IOVDD		V
Low	V _{OL}	I _{OL} = 1 mA		0.1 × I	OVDD V

POWER SUPPLY SPECIFICATIONS

Table 5.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
SUPPLIES					
Voltage	AVDDx	4.5	5.0	5.5	V
	DVDD	2.25	2.5	3.6	V
	PLLVDD	2.25	2.5	3.6	V
	IOVDD	3.0	5.0	5.5	V
	VSUPPLY	3.0	5.0	5.5	V
Analog Current					
Normal Operation	AVDDx = 5.0 V		64		mA
Power-Down	AVDDx = 5.0 V		1		μΑ
Digital Current	DVDD = 2.5 V				
Normal Operation	$f_S = 48 \text{ kHz to } 192 \text{ kHz}$		30		mA
Power-Down	No master clock or I ² S		4		μΑ
PLL Current	PLLVDD = 2.5 V				
Normal Operation	$f_S = 48 \text{ kHz to } 192 \text{ kHz}$		5		mA
Power-Down			1		μΑ
Input/Output Current	IOVDD = 3.3 V				
Normal Operation			4		mA
Power-Down			1		μΑ
QUIESCENT POWER DISSIPATION—DITHER INPUT					
Operation	Master clock = $256 \times f_s$, 48 kHz				
All Supplies	AVDDx = 5.0 V, DVDD/PLLVDD = 2.5 V, IOVDD = 3.3 V		421		mW
Analog Supply	AVDDx = 5.0 V, 26.7 mW per channel		320		mW
Digital Supply	DVDD = 2.5 V		75		mW
PLL Supply	PLLVDD = 2.5 V		13		mW
I/O Supply	IOVDD = 3.3 V		13		mW
Power-Down, All Supplies			0		mW
POWER SUPPLY REJECTION RATIO					
Signal at Analog Supply Pins	1 kHz, 200 mV p-p		85		dB
	20 kHz, 200 mV p-p		85		dB

DIGITAL FILTERS

Table 6.

Parameter	Mode	Factor	Min	Тур	Max	Unit
DAC INTERPOLATION FILTER						
Pass Band	48 kHz mode, typical at 48 kHz	$0.4535 \times f_S$		22		kHz
	96 kHz mode, typical at 96 kHz	$0.3646 \times f_S$	35			kHz
	192 kHz mode, typical at 192 kHz	$0.3646 \times f_S$		70		kHz
Pass-Band Ripple	48 kHz mode, typical at 48 kHz				±0.01	dB
	96 kHz mode, typical at 96 kHz				±0.05	dB
	192 kHz mode, typical at 192 kHz				±0.1	dB
Transition Band	48 kHz mode, typical at 48 kHz	$0.5 \times f_S$		24		kHz
	96 kHz mode, typical at 96 kHz	$0.5 \times f_S$		48		kHz
	192 kHz mode, typical at 192 kHz	$0.5 \times f_S$		96		kHz
Stop Band	48 kHz mode, typical at 48 kHz	$0.5465 \times f_S$		26		kHz
	96 kHz mode, typical at 96 kHz	$0.6354 \times f_s$		61		kHz
	192 kHz mode, typical at 192 kHz	$0.6354 \times f_S$		122		kHz
Stop-Band Attenuation	48 kHz mode, typical at 48 kHz		68			dB
	96 kHz mode, typical at 96 kHz		68			dB
	192 kHz mode, typical at 192 kHz		68			dB
Propagation Delay	48 kHz mode, typical at 48 kHz	25/f _s		521		μs
	96 kHz mode, typical at 96 kHz	11/fs		115		μs
	192 kHz mode, typical at 192 kHz	8/f _s		42		μs
	192 kHz low propagation delay mode, typical at 192 kHz	2/fs		10		μs

TIMING SPECIFICATIONS

 $-40^{\circ}\text{C} < T_{\text{A}} < +105^{\circ}\text{C}, \text{DVDD} = 2.5 \text{ V} \pm 10\%, \text{ unless otherwise noted.}$

Table 7.

Parameter ¹	Description	Min	Тур	Max	Unit
INPUT MASTER CLOCK (MCLKI)					
t _{мн}	Master clock duty cycle, DAC clock source = PLL clock at $256 \times f_s$, $384 \times f_s$, $512 \times f_s$, and $768 \times f_s$	40		60	%
	DAC clock source = direct MCLKI at $512 \times f_s$ (bypass on-chip PLL)	40		60	%
f _{MCLK}	MCLKI frequency of the MCLKI/XTALI pin, PLL mode	6.9		40.5	MHz
	Direct MCLKI 512 × f _s mode			27.1	MHz
f_{BCLK}	DBCLK pin, PLL mode			27.0	MHz
POWER UP and RESET (PU/RST)					
t _{PDR}	Active low for reset time	15			ns
t _{PDRR}	Recovery, reset to active output	300			ms
PLL					
Lock Time	MCLKI input of the MCLKI/XTALI pin			10	ms
	DLRCLK pin input			50	ms
Output Duty Cycle, MCLKO Pin	$256 \times f_S VCO clock$	40		60	%

Parameter ¹	Description	Min	Тур	Max	Unit
SPI PORT	See Figure 17				
f _{SCLK}	SCLK frequency, not shown in Figure 17			10	MHz
t _{scн}	SCLK high	35			ns
t _{SCL}	SCLK low	35			ns
t _{MOS}	MOSI setup, time to SCLK rising	10			ns
tмон	MOSI hold, time from SCLK rising	10			ns
t _{SSS}	SS setup, time to SCLK rising	10			ns
tssh	SS hold, time from SCLK falling	10			ns
t sshigh	SS high	10			ns
t MIE	MISO enable from SS falling			30	ns
t _{MID}	MISO delay from SCLK falling			30	ns
t _{MIH}	MISO hold from SCLK falling, not shown in Figure 17	30			ns
t _{MITS}	MISO tristate from SS rising			30	ns
I ² C	See Figure 2 and Figure 13				
f _{SCL}	SCL clock frequency			400	kHz
t _{SCLL}	SCL low	1.3			μs
tsclh	SCL high	0.6			μs
t _{SCS}	Setup time (start condition), relevant for repeated start condition	0.6			μs
t sch	Hold time (start condition), first clock generated after this period	0.6			μs
tssh	Setup time (stop condition)	0.6			μs
t _{DS}	Data setup time	100			ns
t _{SR}	SDA and SCL rise time			300	ns
t _{SF}	SDA and SCL fall time			300	ns
t _{BFT}	Bus-free time between stop and start	1.3			μs
DAC SERIAL PORT	See Figure 19				
t _{DBH}	DBCLK high, slave mode	10			ns
t_{DBL}	DBCLK low, slave mode	10			ns
t _{DLS}	DLRCLK setup, time to DBCLK rising, slave mode	10			ns
t _{DLH}	DLRCLK hold from DBCLK rising, slave mode	5			ns
t _{DLSK}	DLRCLK skew from DBCLK falling, master mode; not shown in Figure 19	-8		+8	ns
t _{DDS}	DSDATAx setup to DBCLK rising	10			ns
t _{DDH}	DSDATAx hold from DBCLK rising	5			ns

 $^{^1\,} The\ timing\ specifications\ may\ refer\ to\ single\ functions\ of\ multifunction\ pins,\ such\ as\ the\ SCLK\ function\ of\ the\ SCLK/SCL/SA\ pin.$

Timing Diagram

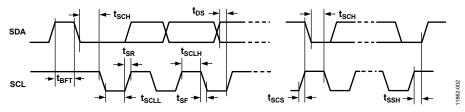


Figure 2. I²C Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Table 8.

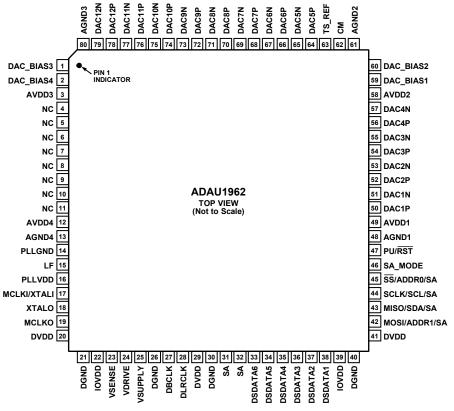
Parameter	Rating
Analog (AVDDx)	−0.3 V to +5.5 V
Input/Output (IOVDD)	−0.3 V to +5.5 V
Digital (DVDD)	-0.3 V to +3.6 V
PLL (PLLVDD)	−0.3 V to +3.6 V
VSUPPLY	-0.3 V to +6.0 V
Input Current (Except Supply Pins)	±20 mA
Analog Input Voltage (Signal Pins)	-0.3 V to AVDDx + 0.3 V
Digital Input Voltage (Signal Pins)	-0.3 V to DVDD + 0.3 V
Operating Temperature Range (Case)	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{JA} represents junction-to-ambient thermal resistance, and θ_{JC} represents the junction-to-case thermal resistance. All characteristics are for a 4-layer board with a solid ground plane.

Table 9. Thermal Resistance


Package Type	θја	θ _{JC}	Unit
80-Lead LQFP	42.3	10.0	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device.Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

- 1. NC = NO CONNECT. LEAVE THIS PIN FLOATING; DO NOT TIE TO GROUND OR POWER.
- SEE THE STANDALONE MODE SECTION (TABLE 13 AND TABLE 14) FOR THE SA_MODE SETTINGS FOR PIN 31, PIN 32, AND PIN 42 THROUGH PIN 45.

Figure 3. Pin Configuration

Table 10. Pin Function Descriptions

Pin No.	Mnemonic ^{1, 2}	Type ³	Description
1	DAC_BIAS3	I	DAC Bias 3. AC couple Pin 1 with a 470 nF capacitor to AGND3.
2	DAC_BIAS4	1	DAC Bias 4. AC couple Pin 2 with a 470 nF capacitor to AVDD3.
3	AVDD3	PWR	Analog Power.
4 to 11	NC		No Connect. Leave these pins floating; do not tie to ground or power.
12	AVDD4	PWR	Analog Power.
13	AGND4	GND	Analog Ground.
14	PLLGND	GND	PLL Ground.
15	LF	0	PLL Loop Filter. Reference the LF pin to PLLVDD.
16	PLLVDD	PWR	PLL Power. Apply 2.5 V to power the PLL.
17	MCLKI/XTALI	1	Master Clock Input/Input to Crystal Inverter. This is a multifunction pin.
18	XTALO	0	Output from Crystal (XTAL) Inverter.
19	MCLKO	0	Master Clock Output.
20, 29, 41	DVDD	PWR	Digital Power, 2.5 V.
21, 26, 30, 40	DGND	GND	Digital Ground.
22, 39	IOVDD	PWR	Power for Digital Input and Output Pins, 3.3 V or 5 V.
23	VSENSE	I	2.5 V Regulator Output, Pass Transistor Collector. Bypass VSENSE with a 10 μ F capacitor in parallel with a 100 nF capacitor.
24	VDRIVE	0	Pass Transistor Base Driver.

Pin No.	Mnemonic ^{1, 2}	Type ³	Description
25	VSUPPLY	I	5 V Voltage Regulator Input, Pass Transistor Emitter. Bypass VSUPPLY with a 10 μ F capacito in parallel with a 100 nF capacitor.
27	DBCLK	I/O	Bit Clock for DACs.
28	DLRCLK	I/O	Left Right Frame Clock for DACs.
31, 32	SA	1	Standalone Mode, Time Domain Multiplexed (SA_MODE TDM) State. See the Standalone Mode section, Table 13, and Table 14 for more information.
33	DSDATA6	1	DAC11 and DAC12 Serial Data Input.
34	DSDATA5	1	DAC9 and DAC10 Serial Data Input.
35	DSDATA4	1	DAC7 and DAC8 Serial Data Input.
36	DSDATA3	1	DAC5 and DAC6 Serial Data Input.
37	DSDATA2	1	DAC3 and DAC4 Serial Data Input.
38	DSDATA1	1	DAC1 and DAC2 Serial Data Input.
42	MOSI/ADDR1/SA	I	Master Output Slave Input (SPI)/Address 1 (I ² C)/Standalone Mode (SA_MODE) State. This is a multifunction pin. See the Standalone Mode section and Table 13 for more information.
43	MISO/SDA/SA	I/O	Master Output Slave Input (SPI)/Control Data Input (I ² C)/Standalone Mode (SA_MODE) State This is a multifunction pin. See the Standalone Mode section and Table 13 for more information.
44	SCLK/SCL/SA	I	Serial Clock Input (SPI)/Control Clock Input (I ² C)/Standalone Mode (SA_MODE) State. This is a multifunction pin. See the Standalone Mode section and Table 13 for more information.
45	SS/ADDR0/SA	I	Slave Select (SPI) Active Low/Address 0 (I ² C)/Standalone Mode (SA_MODE) State. This is a multifunction pin. See the Standalone Mode section and Table 13 for more information.
46	SA_MODE	I	Standalone Mode, Active High. This pin allows mode control of the ADAU1962 using Pin 4 to Pin 45, Pin 31, and Pin 32 (see Table 13 and Table 14 for more information).
47	PU/RST	1	Power-Up/Reset (Active Low). See Power-Up and Reset section for more information.
48	AGND1	GND	Analog Ground.
49	AVDD1	PWR	Analog Power.
50	DAC1P	0	DAC1 Positive Output.
51	DAC1N	0	DAC1 Negative Output.
52	DAC2P	0	DAC2 Positive Output.
53	DAC2N	0	DAC2 Negative Output.
54	DAC3P	0	DAC3 Positive Output.
55	DAC3N	0	DAC3 Negative Output.
56	DAC4P	0	DAC4 Positive Output.
57	DAC4N	0	DAC4 Negative Output.
58	AVDD2	PWR	Analog Power.
59	DAC_BIAS1	1	Filter for DAC Bias 1. AC couple Pin 59 with a 470 nF capacitor to AVDD2.
50	DAC_BIAS2	1	Filter for DAC Bias 2. AC couple Pin 60 with a 470 nF capacitor to AGND2.
61	AGND2	GND	Analog Ground.
62	CM	0	Common-Mode Reference Filter Capacitor Connection. Bypass the CM pin with a 10 μ F capacitor in parallel with a 100 nF capacitor to AGND2. The internal reference can be shut off in the PLL_CLK_CTRL1 register and the pin can be driven with an outside voltage source.
63	TS_REF	0	Voltage Reference Filter Capacitor Connection. Bypass Pin 63 with a 10 μF capacitor in parallel with a 100 nF capacitor to AGND2.
64	DAC5P	0	DAC5 Positive Output.
65	DAC5N	0	DAC5 Negative Output.
56	DAC6P	0	DAC6 Positive Output.
67	DAC6N	0	DAC6 Negative Output.
68	DAC7P	0	DAC7 Positive Output.
59	DAC7N	0	DAC7 Negative Output.
70	DAC8P	0	DAC8 Positive Output.
71	DAC8N	0	DAC8 Negative Output.
72	DAC9P	0	DAC9 Positive Output.
73	DAC9N	0	DAC9 Negative Output.

Pin No.	Mnemonic ^{1, 2}	Type ³	Description
74	DAC10P	0	DAC10 Positive Output.
75	DAC10N	0	DAC10 Negative Output.
76	DAC11P	0	DAC11 Positive Output.
77	DAC11N	0	DAC11 Negative Output.
78	DAC12P	0	DAC12 Positive Output.
79	DAC12N	0	DAC12 Negative Output.
80	AGND3	GND	Analog Ground.

¹ AVDD1, AVDD2, AVDD3, and AVDD4 are referred to elsewhere in this data sheet as AVDDx when AVDDx means any or all of the ADVD pins.

² DAC Channel 1 to DAC Channel 12 pins are referred to elsewhere in this data sheet as DACx, DACxP, or DACxN when it means any or all of the DAC channel pins.

³ I = input, O = output, I/O = input/output, PWR = power, and GND = ground.

TYPICAL PERFORMANCE CHARACTERISTICS

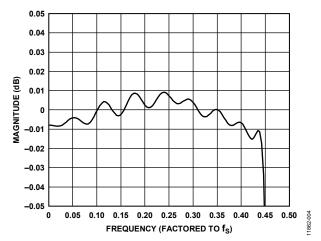


Figure 4. DAC Pass-Band Filter Response, 48 kHz

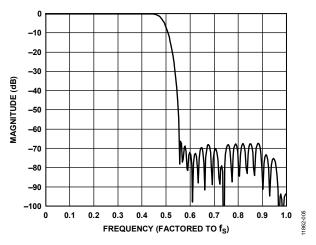


Figure 5. DAC Stop-Band Filter Response, 48 kHz

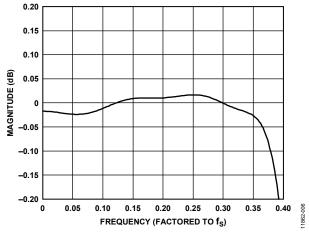


Figure 6. DAC Pass-Band Filter Response, 96 kHz

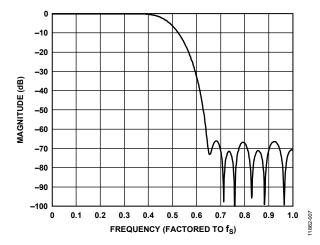


Figure 7. DAC Stop-Band Filter Response, 96 kHz

TEST CIRCUITS

Typical application circuits are shown in Figure 8 to Figure 11. Recommended loop filters for the DLRCLK and MCLKI/XTALI modes of the PLL reference are shown in Figure 8. Output filters for the DAC outputs are shown in Figure 9 and Figure 11, and a recommended external regulator circuit is shown in Figure 10.

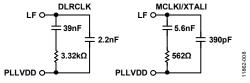


Figure 8. Recommended Loop Filters for DLRCLK and MCLKI/XTALI PLL Reference Modes

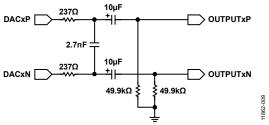


Figure 9. Typical DAC Output Passive Filter Circuit (Differential)

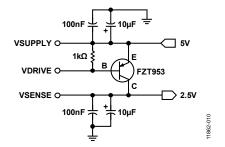


Figure 10. Recommended External Regulator Circuit

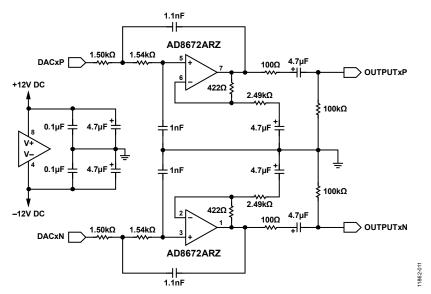


Figure 11. Typical DAC Output Active Filter Circuit (Differential)

THEORY OF OPERATION DIGITAL-TO-ANALOG CONVERTERS (DACs)

For improved noise and distortion performance, the ADAU1962 includes 12 differential DAC channels configured as voltage outputs for a simplified connection. The DACs include on-chip digital interpolation filters with 68 dB stop-band attenuation and linear phase response, operating at an oversampling ratio of 256× (48 kHz range), 128× (96 kHz range), or 64× (192 kHz range). Each channel has its own independently programmable attenuator, adjustable in 255 steps in increments of 0.375 dB. Digital inputs are supplied through six serial data input pins (two channels on each pin), a common frame clock (DLRCLK), and a bit clock (DBCLK). Alternatively, any one of the time domain multiplexed (TDM) modes can be used to access up to 12 channels on a single TDM data line.

The ADAU1962 has a low propagation delay mode; this mode is an option for an fs of 192 kHz and is enabled in Register DAC_CTRL0[2:1]. By setting these bits to 0b11, the propagation delay is reduced by the amount listed in Table 6. The shorter delay is achieved by reducing the amount of digital filtering; the negative impact of selecting this mode is reduced audio frequency response and increased out-of-band energy.

When AVDDx is supplied with +5 V, each analog output pin has a nominal common-mode (CM) dc level of +2.25 V and swings ± 2.12 V above and below the +2.25 V for a 1.5 V rms signal on each pin. Differentially, the signal is 3 V rms (8.48 V p-p) from a 0 dBFS digital input signal.

The differential analog outputs require a mere single-order, passive differential resistor-capacitor (RC) filter to provide the specified DNR performance (see Figure 9 for an example filter). The outputs can easily drive differential inputs on a separate printed circuit board (PCB) through cabling, as well as differential inputs on the same PCB.

If more signal level is required or if a more robust filter is needed, a single op amp gain stage, designed as a second-order, low-pass Bessel filter, can be used to remove the high frequency out-of-band noise present on each pin of the differential outputs. The choice of components and design of this circuit are critical to obtaining the full DNR yield of the DACs (see the recommended passive and active circuits in Figure 9 and Figure 11). This filter can be built into an active differential amplifier to provide a single-ended output with gain, if necessary. Note that the use of op amps with low slew rate or low bandwidth can cause high frequency noise and tones to fold down into the audio band; exercise care when selecting these components.

The ADAU1962 offers control over the analog performance of the DACs; it is possible to program the registers to reduce the power consumption with the trade-off of lower signal-to-noise ratio (SNR) and THD + N. The reduced power consumption is the result of changing the internal bias current to the analog output amplifiers.

The DAC_POWER1 to DAC_POWER3 registers present four basic settings for the DAC power vs. performance in each of the 12 channels: best performance, good performance, low power, and lowest power.

Alternatively, in Register PLL_CLK_CTRL1[7:6], the LOPWR_MODE bits offer global control over the power and performance for all 12 channels. The default setting is 0b00. This setting allows the channels to be controlled individually using the DAC_POWERx registers. Setting 0b10 and 0b11 selects the low power and lowest power settings, respectively. The data presented in Table 11 shows the result of setting all 12 channels to each of the four settings. The SNR and THD + N specifications are shown in relation to the measured performance of a device at the best performance setting.

The voltage at CM, the common-mode reference pin, can be used to bias the external op amps that buffer the output signals (see the Power Supply and Voltage Reference section).

Table 11. DAC Power vs. Performance

1 4010 110 2 110 1 0 1 01 100 1 0110	11111111			
Register Setting	Best Performance	Good Performance	Low Power	Lowest Power
Total AVDDx Current	64 mA	57 mA	50 mA	43 mA
SNR	Reference	-0.2 dB	−1.5 dB	-14.2 dB
THD + N (-1 dbFS Signal)	Reference	-1.8 dB	-3.0 dB	-5.8 dB

CLOCK SIGNALS

Powering the ADAU1962 and asserting the PU/\overline{RST} pin high starts the device in either standalone mode (SA_MODE) or program mode, depending on the state of SA_MODE (Pin 46). The clock functionality of SA_MODE is described in the Standalone Mode section.

The ADAU1962 default in program mode is for the MCLKO pin to feed a buffered output of the MCLKI signal on the MCLKI/XTALI pin. The default for the DLRCLK and DBCLK ports is slave mode; to function, drive the DAC with a coherent set of master clock, frame clock, and bit clock signals.

Use Register PLL_CLK_CTRL1[5:4] to program the MCLKO pin to provide different clock signals. The default, 0b10, provides a buffered copy of the clock signal that is driving the MCLKI pin function. Two modes, 0b00 and 0b01, provide low jitter clock signals.

The 0b00 setting yields a clock rate between 4 MHz and 6 MHz, and the 0b01 setting yields a clock rate between 8 MHz and 12 MHz. Both of these clock frequencies scale automatically as ratios of the master clock inside the ADAU1962.

As an example, an input to MCLKI of $8.192 \, \text{MHz}$ and a setting of 0b00 yield an MCLKO of $(8.192/2) = 4.096 \, \text{MHz}$. Alternatively, an input to MCLKI of $36.864 \, \text{MHz}$ and a setting of 0b01 yield an MCLKO frequency of $(36.864/3) = 12.288 \, \text{MHz}$. The setting, 0b11, shuts off the MCLKO pin.

Program the PLL_CLK_CTRLx registers (Register 0x00 and Register 0x01) only after asserting the PU/RST pin high. Select the on-chip PLL to use the clock appearing at the MCLKI/XTALI pin at a frequency of 256, 384, 512, or 768 times the sample rate (f_s), referenced to the 48 kHz mode from the master clock select (MCS) setting, as listed in Table 12.

In 96 kHz mode, the master clock frequency stays at the same absolute frequency; therefore, the actual multiplication rate is divided by 2; likewise, in 192 kHz mode, the actual multiplication rate is divided by 4.

For example, programming the ADAU1962 in 256 \times fs mode derives a master clock input frequency of 256 \times 48 kHz =

12.288 MHz. Switching the ADAU1962 to 96 kHz operation (by writing to DAC_CTRL0[2:1]), the frequency of the master clock remains at 12.288 MHz, which is an MCS ratio of $128 \times f_S$ in this example. Therefore, in 192 kHz mode, MCS becomes $64 \times f_S$.

The internal clock for the digital core varies by mode: $512 \times f_S$ (48 kHz mode), $256 \times f_S$ (96 kHz mode), or $128 \times f_S$ (192 kHz mode). By default, the on-board PLL generates this internal master clock from an external clock.

The PLL must be powered and stable before using the ADAU1962 as a source for quality audio. A reset enables the PLL and does not require writing to the I^2C or SPI port for normal operation.

With the PLL enabled, the performance of the ADAU1962 is unaffected by jitter as high as a 300 ps rms time interval error (TIE). When the internal PLL is disabled, use an independent crystal oscillator to generate the master clock.

When using the ADAU1962 in direct master clock mode, power down the PLL in the PDN_THRMSENS_CTRL_1 register. For direct master clock mode, feed a frequency of $512 \times f_{\rm S}$ (referenced to 48 kHz mode) into the MCLKI pin, and set the CLK_SEL bit in the PLL_CLK_CTRL1 register to 1.

The ADAU1962 PLL can also be programmed to run from an external LRCLK without an external master clock. Setting the PLLIN bits in the PLL_CLK_CTRL0 register to 0b01 and connecting the appropriate loop filter to the LF pin (see Figure 8), the ADAU1962 PLL generates all of the necessary internal clocks for operation with no external master clock. This mode reduces the number of high frequency signals in the design, reducing EMI emissions.

It is possible to reduce the EMI emissions of the circuit further by using the internal bit clock generation setting of the BCLK_GEN bit in the DAC_CTRL1 register. Setting the BCLK_GEN bit to 1 (internal) and the SAI_MS bit to 0 (slave), the ADAU1962 generates its own bit clock; this configuration works with the PLL input register, PLL_CLK_CTRL0[7:6] set to either MCLKI/XTALI or DLRCLK. The clock on the DLRCLK pin is the only required clock in DLRCLK PLL mode.

Table 12. MCS and fs Modes

Samr	ole Rate Select,	Master Clock Select (MCS), PLL_CLK_CTRL0[2:1]									
DAC_CTRL0[2:1]		Sett	ing 0, 0b00	Sett	Setting 1, 0b01		Setting 2, 0b10		ing 3, 0b11		
f _s (kHz)	Bit Setting	Ratio	Master Clock (MHz)	Ratio	Master Clock (MHz)	Ratio	Master Clock (MHz)	Ratio	Master Clock (MHz)		
32	0b00	256 × f _s	8.192	384 × f _s	12.288	512 × f _s	16.384	768 × f _s	24.576		
44.1	0b00	$256 \times f_s$	11.2896	$384 \times f_S$	16.9344	512 × f _s	22.5792	768 × f _s	33.8688		
48	0b00	$256 \times f_s$	12.288	$384 \times f_s$	18.432	$512 \times f_s$	24.576	$768 \times f_s$	36.864		
64	0b01	128 × f _s	8.192	192 × f _s	12.288	256 × f _s	16.384	384 × f _s	24.576		
88.2	0b01	$128 \times f_s$	11.2896	192 × f _s	16.9344	$256 \times f_s$	22.5792	$384 \times f_S$	33.8688		
96	0b01	$128 \times f_s$	12.288	192 × f _s	18.432	$256 \times f_s$	24.576	$384 \times f_S$	36.864		
128	0b10 or 0b11	64 × f _s	8.192	96 × f _s	12.288	128 × f _s	16.384	192 × f _s	24.576		
176.4	0b10 or 0b11	$64 \times f_s$	11.2896	$96 \times f_S$	16.9344	$128 \times f_S$	22.5792	192 × f _s	33.8688		
192	0b10 or 0b11	$64 \times f_s$	12.288	$96 \times f_S$	18.432	$128 \times f_S$	24.576	192 × f _s	36.864		

POWER-UP AND RESET

The power sequencing of the ADAU1962 begins with AVDDx and IOVDD, followed by DVDD. It is very important that AVDDx be settled at a regulated voltage and that IOVDD be within 10% of the regulated voltage before applying DVDD. When using the ADAU1962 internal regulator, this timing occurs by default.

To guarantee proper startup, pull the PU/\overline{RST} pin low by using an external resistor and then, after the power supplies have stabilized, drive PU/\overline{RST} high. The PU/\overline{RST} can also be pulled high using a simple RC network.

Driving the PU/ \overline{RST} pin low puts the device into a very low power state (<3 μ A), disabling all functionality of the ADAU1962 until the PU/ \overline{RST} pin is asserted high. After asserting this pin high, the ADAU1962 requires 300 ms to stabilize. Toggle the MMUTE bit in the DAC_CTRL0 register for operation.

Use the PUP bit (master power-up control) in the PLL_CLK_CTRL0 register to power down the ADAU1962. Setting the master power-up bit to 0 puts the ADAU1962 in an idle state while maintaining the settings of all registers. Additionally, to power down individual sections of the ADAU1962, use the power-down bits in the PDN_THRMSENS_CTRL1 register (TS_PDN, PLL_PDN and VREG_PDN).

The SOFT_RST bit in the PLL_CLK_CTRL0 register sets all of the control registers to their default settings while maintaining the internal clocks in default mode. The SOFT_RST bit does not power down the analog outputs, and toggling this bit does not cause audible popping sounds at the differential analog outputs.

For proper startup of the ADAU1962, follow these steps:

- 1. Apply power to the ADAU1962 as described previously in the Power-Up and Reset section.
- Assert the PU/RST pin high after the power supplies are stable.
- 3. Set the PUP bit to 1.
- 4. Program all necessary registers for the desired settings.
- 5. Set the MMUTE bit to 0 to unmute all channels.

STANDALONE MODE

The ADAU1962 can operate without a typical I²C or SPI connection to a microcontroller. This standalone mode is available by setting the SA_MODE (Pin 46) to IOVDD. All registers are set to default except for the options shown in Table 13.

Table 13. SA_MODE Settings

Pin No.	Setting	Function
42	0	Master mode serial audio interface (SAI)
	1	Slave mode SAI
43	0	$MCLKI = 256 \times f_s$, PLL on
	1	$MCLKI = 384 \times f_s$, PLL on
44	0	Must be set to 0
45	0	I ² S SAI format
	1	TDM modes, determined by Pin 31 and Pin 32

Setting both the SA_MODE pin and Pin 45 to high selects TDM mode. Table 14 shows the available TDM modes; set these modes by connecting Pin 31 (SA) and Pin 32 (SA) to GND or IOVDD.

Table 14. TDM Modes

Pin No.	Setting	Function
31, 32	00	TDM4: DLRCLK pulse
	01	TDM8: DLRCLK pulse
	10	TDM16: DLRCLK pulse
	11	TDM8: DLRCLK 50% duty cycle

By powering up the ADAU1962 in SA_MODE and asserting the PU/RST high, the MCLKO pin provides a buffered version of the MCLKI/XTALI pin, whether the source is a crystal or an active oscillator.

I²C CONTROL PORT

The ADAU1962 has an I²C-compatible control port that permits programming and readback of the internal control registers for the DACs and clock system. The I²C interface of the ADAU1962 is a 2-wire interface consisting of a clock line (SCL) and a data line (SDA). SDA is bidirectional, and the ADAU1962 drives SDA either to acknowledge the master (ACK) or to send data during a read operation. The SDA line (on the MISO/SDA/SA pin) for the I²C port is an open-drain collector and requires a 2 k Ω pull-up resistor. A write or read access occurs when the SDA line is pulled low while the SCL line (on the SCLK/SCL/SA pin) is high, indicated by a start in Figure 12 and Figure 13.

SDA is only allowed to change when SCL is low, except when a start or stop condition occurs, as shown in Figure 12 and Figure 13. The first eight bits of the data-word consist of the device address and the R/\overline{W} bit. The device address consists of an internal built-in address (0x04) and two address pins, the ADDR1 function of the MOSI/ADDR1/SA pin and the ADDR0 function of the $\overline{SS}/\overline{ADDR0/SA}$ pin (see Table 15).

Table 15. I²C Addresses

10010 1011 0110	441 00000	
ADDR1 (AD1)	ADDR0 (AD0)	Slave Address
0	0	0x04
0	1	0x24
1	0	0x44
1	1	0x64

I²C Write

The two address bits allow four ADAU1962 devices to be used in a system. Initiating a write operation to the ADAU1962 involves the following steps (see Figure 12):

- 1. Send a start condition
- 2. Send the device address with the R/W bit set low. The ADAU1962 responds by issuing an acknowledge to indicate that it has been addressed.
- Send a second frame directing the ADAU1962 to which register is required to be written.
 - a. A second acknowledge is issued by the ADAU1962.
- 4. Send a third frame with the eight data bits required to be written to the register. A third acknowledge is issued by the ADAU1962.
- 5. Send a stop condition to complete the data transfer.

Table 16. I²C Abbreviations

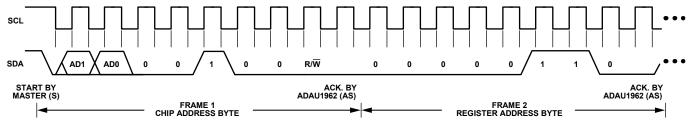

Abbreviation	Description
S	Start bit
Р	Stop bit
AM	Acknowledge by master
AS	Acknowledge by slave

Table 17. Single Word I²C Write

	S	Chip Address, $R/\overline{W} = 0$	AS	Register Address	AS	Data-Word	AS	Р
--	---	------------------------------------	----	------------------	----	-----------	----	---

Table 18. Burst Mode I²C Write

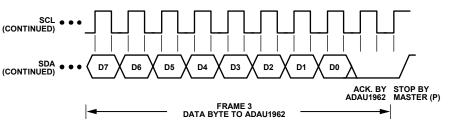


Figure 12. I²C Write Format

I²C Read

A read operation requires that the user first write to the ADAU1962 to point to the correct register and then read the data. The following steps achieve this (see Figure 13):

- Send a start condition followed by the device address frame with the R/W bit low and then the register address frame. The ADAU1962 responds with an acknowledge.
- Issue a repeated start condition. The next frame is the device address with the R/\overline{W} bit set high. On the next frame, the ADAU1962 outputs the register data on the SDA line.
- Issue a stop condition to complete the read operation.

FRAME 4 REGISTER DATA

Table 10 Single Word I2C Dec

Ta	able 19. Single W	ord I ² C	Read											
S	Chip Address,	$R/\overline{W} = 0$	AS	F	Regis	ter Address	AS	S Chip Ad	dress, I	$R/\overline{W} = 1$	AS	Data-Word	AM	Р
Ta	Table 20. Burst Mode I ² C Read													
S	Chip Address, R/W = 0		egister .ddress	AS	S	Chip Address, R/W = 1	AS	Data-Word 1	AM	Data-Word 2	2 AN	Data-Word N	I AM	Р
								7 -		• •				
					\-\ 		1		- -	HHH		ΗΗι		
SDA \AD1 XAD0 \ 0					/	1 0 0	R/W	0 0	0	0 0	1 1	0	• •	
START BY MASTER (S)						ΑC	ACH AU1962	(. BY (AS)				ACK. BY ADAU1962 (AS)		
◄						FRAME 1 ADDRESS BYTE		→ -	REG	FRAME 2 ISTER ADDRESS	вуте	-		
(C	SCL • • •			Ц						ГТ			_	
(C	SDA • • •	AD1	ADO 0		<u>。</u> /	1 0 0	R/W\	D7 _D6	D5	D4 D3	D2 D	I DO	\int	
		ED START STER (S)			FRAI	ME 3 ADA	ACK. AU1962 (FRAME 4		ACK. BY S' MASTER (AM) M		25-013

Figure 13. I²C Read Format

FRAME 3 CHIP ADDRESS BYTE

SERIAL CONTROL PORT: SPI MODE

The ADAU1962 has a 4-wire SPI control port that permits the programming and reading back of the internal control registers for the DACs and clock system. A standalone mode is also available for operation without serial control; it is configured at reset using the SA_MODE pin. See the Standalone Mode section for details about the SA_MODE pin.

By default, the ADAU1962 is in I 2 C mode; however, to enter SPI control mode pull $\overline{\text{SS}}$ low three times. To enter SPI control mode, perform three dummy writes to the SPI port (the ADAU1962 does not acknowledge these three writes). Beginning with the fourth SPI write, data can be written to or read from the integrated circuits. The ADAU1962 can exit SPI control mode only by a full reset initiated by power cycling the device.

The SPI control port of the ADAU1962 is a 4-wire serial control port. The format is a 24-bit wide data-word. The serial bit clock and latch can be completely asynchronous to the sample rate of the DACs. Table 21 shows the format of the SPI address byte.

The first byte is the global address with a read/write bit. For the ADAU1962, the address is 0x06, shifted left one bit due to the R/\overline{W} bit. The second byte is the ADAU1962 register address, and the third byte is the data, as shown in Figure 15 and Figure 16.

Table 21. SPI Address and R/\overline{W} Byte Format

Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
0	0	0	0	1	1	0	R/W

When reading data from the ADAU1962, the MISO pin is tristated until the third byte, at which point it drives the data out (see Figure 16). The MISO pin is tristated at all other times, allowing the pin to be bussed with other devices; see Figure 17 for the timing requirements.

Chip Address R/W

The LSB of the first byte of a SPI transaction is an R/\overline{W} bit. This bit determines whether the communication is a read (Logic Level 1) or a write (Logic Level 0); see Table 21 for this format.

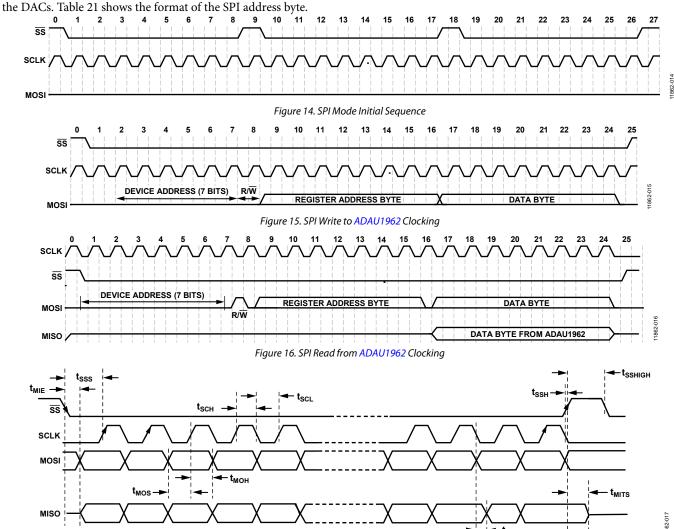


Figure 17. Format of the SPI Signal

SPI Burst Read/Write

The SPI port is capable of performing burst reads or writes. This is accomplished by sending the chip address byte with the R/\overline{W} bit followed by the first register address that needs to be read or written to. Then, as long as \overline{SS} (on the $\overline{SS}/ADDR0/SA$ pin) is held low, registers can be sequentially read or written by continuing to send out clock pulses into SCLK (on the SCLK/SCL/SA pin). To initialize the ADAU1962

- 1. Send the address byte with the R/\overline{W} bit low (write).
- 2. Send the address of the first register.
- 3. Send all the register byte values.
- 4. Toggle the \overline{SS} pin to end the transfer.
- 5. Perform a burst read to verify the register writes were successful.

When referencing back to Analog Devices legacy devices, different pin names (mnemonics) were used for these SPI port functions. See Table 22 for details of the changes.

Table 22. SPI Port Pin Naming Conventions

Pin No.	Legacy Pin Mnemonic	New Pin Mnemonic
42	CDATA	MOSI
43	COUT	MISO
44	CCLK	SCLK
45	CLATCH	SS

POWER SUPPLY AND VOLTAGE REFERENCE

The ADAU1962 is designed for 5 V analog and 2.5 V digital supplies. To minimize noise pickup, bypass the power supply pins with 100 nF ceramic chip capacitors placed as close to the pins as possible. Provide a bulk aluminum electrolytic capacitor of at least 22 μF for each rail on the same PCB as the codec. It is important that the analog supply be as clean as possible.

The ADAU1962 includes a 2.5 V regulator driver that requires only an external pass transistor and bypass capacitors to make a 2.5 V regulator from a 5 V supply. Decouple the VSUPPLY and VSENSE pins with no more than 10 μ F of capacitance in parallel with 100 nF high frequency bypassing. If the regulator driver is not used, connect VSUPPLY and VDRIVE to DGND, and leave VSENSE unconnected.

All digital inputs are compatible with TTL and CMOS levels. All outputs are driven from the 3.3 V or 5 V IOVDD supply and are compatible with TTL and 3.3 V CMOS levels.

The temperature sensor internal voltage reference (V_{TS_REF}) is made available on the TS_REF pin to filter the reference with external capacitors; bypass this pin as close to the chip as possible with a parallel combination of 10 μF and 100 nF capacitors.

The internal band gap reference that drives the common-mode reference voltage for the DACs and appears on the CM pin can be disabled in the PLL_CLK_CTRL1 register by setting VREF_EN to 0. Then, the CM pin can be driven from an external source. Use this configuration to scale all of the DACx outputs to the clipping level of a power amplifier based on its power supply voltage.

The CM pin is the internal common-mode reference. Bypass CM as close to the chip as possible with a parallel combination of 10 μF and 100 nF capacitors. Use this voltage to bias external op amps to the common-mode voltage of the analog input and output signal pins. To provide a quiet, low impedance source for the external circuitry, isolate the CM pin from the external circuitry using a high quality buffer. Use of a quiet op amp is critical because any noise added to the reference voltage is injected into the signal path.

SERIAL DATA PORTS—DATA FORMAT

The 12 DAC channels use a common serial bit clock (DBCLK) and a common left right framing clock (DLRCLK) in the serial data port. The clock signals are all synchronous with the sample rate. The normal stereo serial modes are shown in Figure 18.

The DACx serial data mode defaults to I²S (1-bit clock delay) upon power-up and reset. The ports can also be programmed for left justified and right justified (24-bit and 16-bit) operation using DAC_CTRL0[7:6]. Select stereo and TDM modes using DAC_CTRL0[5:3]. The polarity of the DLRCLK pin is programmable according to the DAC_CTRL1[5] bit, allowing for easy channel swapping.

The DBCLK pin can latch on the rising or the falling edge of the clock signal. The DAC_CTRL1[1] bit selects the active edge.

The serial ports are programmable, becoming either clock masters or slaves depending on the setting of the DAC_CTRL1[0] bit. By default, the serial ports are in slave mode.

TIME DIVISION MULTIPLEXED (TDM) MODES

The ADAU1962 serial ports also have several different TDM serial data modes. The ADAU1962 can support a single data line (TDM16), a dual data line (TDM8), a quad data line (TDM4), or eight data lines (TDM2). The DLRCLK/frame clock can operate in both single cycle pulse mode and a 50% duty cycle mode. Both 16-bit clocks or 32-bit clocks per channel are selectable for each mode.

The input/output pins of the serial ports are defined according to the serial mode that is selected. For a detailed description of the function of each pin in TDM and stereo modes, see Table 23.

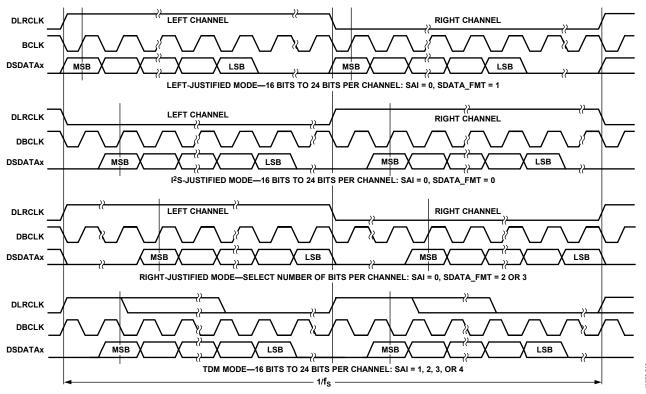
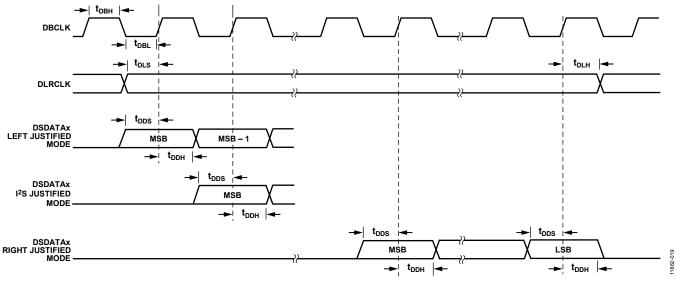



Figure 18. Stereo and TDM Serial Audio Modes

Table 23. Pin Function Changes in Different Serial Audio Interface (SAI) Modes

Signal	Stereo Modes (SAI = 0 or SAI = 1)	TDM4 Mode (SAI = 2)	TDM8 Mode (SAI = 3)	TDM16 Mode (SAI = 4)
DSDATA1	Channel 1/Channel 2 data input	Channel 1 to Channel 4 data input	Channel 1 to Channel 8 data input	Channel 1 to Channel 12 data input
DSDATA2	Channel 3/Channel 4 data input	Channel 5 to Channel 8 data input	Channel 9 to Channel 12 data input	Not used
DSDATA3	Channel 5/Channel 6 data input	Channel 9 to Channel 12 data input	Not used	Not used
DSDATA4	Channel 7/Channel 8 data input	Not used	Not used	Not used
DSDATA5	Channel 9/Channel 10 data input	Not used	Not used	Not used
DSDATA6	Channel 11/Channel 12 data input	Not used	Not used	Not used
DLRCLK	DLRCLK input/DLRCLK output	TDM frame sync input/ TDM frame sync output	TDM frame sync input/ TDM frame sync output	TDM frame sync input/ TDM frame sync output
DBCLK	DBCLK input/DBCLK output	TDM DBCLK input/ TDM DBCLK output	TDM DBCLK input/ TDM DBCLK output	TDM DBCLK input/ TDM DBCLK output
Maximum Sample Rate	192 kHz	192 kHz	96 kHz	48 kHz

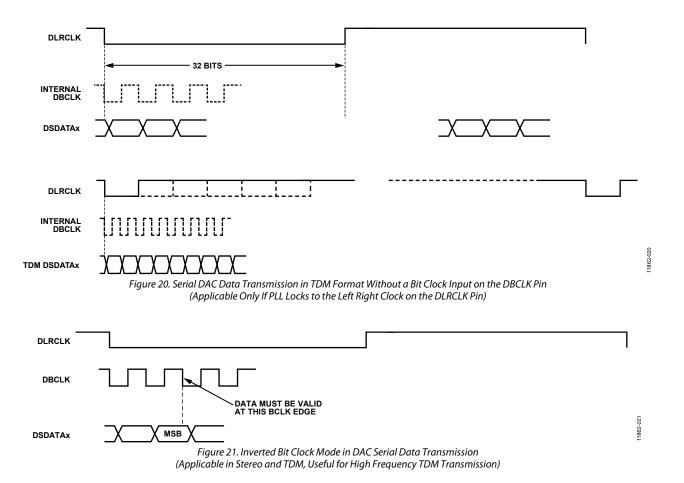
Figure 19. DAC Serial Timing

TEMPERATURE SENSOR

The ADAU1962 has an on-board temperature sensor that allows the user to read the temperature of the silicon inside of the device. The temperature sensor readout has a range of -60° C to $+140^{\circ}$ C in 1°C steps. The PDN_THRMSENS_CTRL_1 register controls the settings of the sensor.

The temperature sensor powers on by default and can be shut off by setting the TS_PDN bit to 1 in the PDN_ THRMSENS_ CTRL_1 register. The temperature sensor can run in either continuous operation or one shot mode. The temperature sensor conversion mode is modified using Bit 5, THRM_MODE; the default is THRM_MODE = 1, one shot mode. In one shot mode, writing a 0 followed by writing a 1 to Bit 4, THRM_GO, results in a single reset and temperature conversion, placing the resulting temperature data in the THRM_TEMP_STAT register.

In continuous operation mode, the data conversion takes place at a rate set by Bits[7:6], THRM_RATE, with a range of 0.5 sec to 4 sec between samples. Faster rates are possible using one shot mode.


When a temperature conversion is placed in the THRM_TEMP_STAT register, the data can be translated into degrees Celsius (°C) using the following steps:

- 1. Convert the binary or hexadecimal data read from THRM_TEMP_STAT into decimal form.
- 2. Subtract 60 from the converted THRM_TEMP_STAT data (TEMP); this is the temperature of the silicon in °C.

ADDITIONAL MODES

The ADAU1962 offers several additional modes for board level design enhancements. To reduce the EMI in the board level design, serial data can be transmitted without an explicit bit clock input on the DBCLK pin. See Figure 20 for an example of a DAC data transmission in TDM mode that does not require a high speed bit clock or an external master clock. This configuration is applicable when the ADAU1962 master clock is generated by the PLL with the DLRCLK pin as the PLL reference frequency.

To relax the requirement for the setup time of the ADAU1962 in cases of high speed TDM data transmission, the ADAU1962 can latch in the data using the falling edge of the DBCLK pin; see the BCLK_EDGE bit in the DAC_CTRL1 register. This effectively dedicates the entire bit clock period to the setup time. This mode is useful in cases where the source has a large delay time in the serial data driver. Figure 21 shows this inverted bit clock mode of data transmission.

REGISTER SUMMARY

Table 24. ADAU1962Register Summary

Reg	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x00	PLL_CLK_CTRL0	[7:0]	PLI	LIN	XTAL	SET	SOFT_RST	MC	S	PUP	0x00	RW
0x01	PLL_CLK_CTRL1	[7:0]	LOPWR	_MODE	MCLK	O_SEL	PLL_MUTE	PLL_LOCK	VREF_EN	CLK_SEL	0x2A	RW
0x02	PDN_THRMSENS_ CTRL_1	[7:0]	THRM	_RATE	THRM_MODE	THRM_GO	RESERVED	TS_PDN	PLL_PDN	VREG_PDN	0xA0	RW
0x03	PDN_CTRL2	[7:0]	DAC08_PDN	DAC07_PDN	DAC06_PDN	DAC05_PDN	DAC04_PDN	DAC03_PDN	DAC02_PDN	DAC01_PDN	0x00	RW
0x04	PDN_CTRL3	[7:0]		RESE	RVED		DAC12_PDN	DAC11_PDN	DAC10_PDN	DAC09_PDN	0x00	RW
0x05	THRM_TEMP_STAT	[7:0]				Т	EMP				0x00	R
0x06	DAC_CTRL0	[7:0]	SDATA	A_FMT		SAI		FS		MMUTE	0x01	RW
0x07	DAC_CTRL1	[7:0]	BCLK_GEN	LRCLK_MODE	LRCLK_POL	SAI_MSB	RESERVED	BCLK_RATE	BCLK_EDGE	SAI_MS	0x00	RW
0x08	DAC_CTRL2		RESERVED		_CTRL	_	DAC_POL	AUTO_MUTE_EN	DAC_OSR	DE_EMP_EN	0x06	RW
0x09	DAC_MUTE1	[7:0]	DAC08_MUTE	DAC07_MUTE	DAC06_MUTE	DAC05_MUTE	DAC04_MUTE	DAC03_MUTE	DAC02_MUTE	DAC01_MUTE	0x00	RW
	DAC_MUTE2	[7:0]		RESE	RVED		DAC12_MUTE	DAC11_MUTE	DAC10_MUTE	DAC09_MUTE	0x00	RW
0x0B	DACMSTR_VOL	[7:0]				DACM	ISTR_VOL				0x00	RW
0x0C	DAC01_VOL	[7:0]				DAC	01_VOL				0x00	RW
0x0D	DAC02_VOL	[7:0]				DAC	02_VOL				0x00	RW
0x0E	DAC03_VOL	[7:0]				DAC	03_VOL				0x00	RW
0x0F	DAC04_VOL	[7:0]				DAC	04_VOL				0x00	RW
0x10	DAC05_VOL	[7:0]				DAC	05_VOL					RW
0x11	DAC06_VOL	[7:0]				DAC	06_VOL				0x00	RW
	DAC07_VOL	[7:0]				DAC	07_VOL				0x00	RW
0x13	DAC08_VOL	[7:0]				DAC	08_VOL				0x00	RW
0x14	DAC09_VOL	[7:0]				DAC	09_VOL					RW
	DAC10_VOL	[7:0]				DAC	10_VOL					RW
0x16	DAC11_VOL	[7:0]				DAC	11_VOL				0x00	RW
0x17	DAC12_VOL	[7:0]				DAC	12_VOL					RW
0x1C	CM_SEL_PAD_ STRGTH	[7:0]	RESERVED	RESERVED	PAD_DRV	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	0x02	RW
0x1D	DAC_POWER1	[7:0]	DAC04_	POWER	DAC03_	POWER	DAC02	2_POWER	DAC01_	POWER	0xAA	RW
0x1E	DAC_POWER2	[7:0]	DAC08_	_POWER	DAC07_	_POWER	DAC0	6_POWER	DAC05_	_POWER	0xAA	RW
0x1F	DAC_POWER3	[7:0]	DAC12_	_POWER	DAC11	_POWER	DAC1	D_POWER	DAC09_	_POWER	0xAA	RW

REGISTER DETAILS

PLL AND CLOCK CONTROL 0 REGISTER

Address: 0x00, Reset: 0x00, Name: PLL_CLK_CTRL0

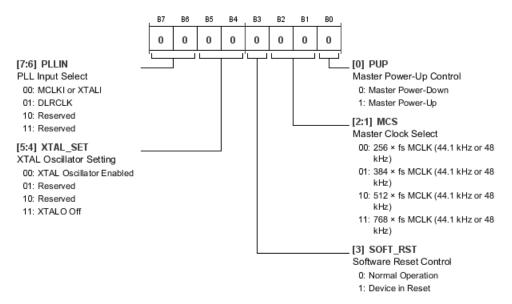


Table 25. Bit Descriptions for PLL_CLK_CTRL0

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:6]	PLLIN		PLL Input Select. Selects MCLKI/XTALI or DLRCLK pins as the input to the	0x0	RW
			PLL.		
		00	MCLKI or XTALI.	ed 0x0 to 0x0	
		01	DLRCLK.		
		10	Reserved.		
		11	Reserved.		
[5:4]	XTAL_SET		XTAL Oscillator Setting. XTALO pin status.	0x0	RW
		00	XTAL Oscillator Enabled.		
		01	Reserved.		
		10	Reserved.		
		11	XTALO Off.		
3	SOFT_RST		Software Reset Control. This bit resets all circuitry inside the integrated circuit, except I ² C/SPI communications. All control registers are reset to default values, except Register 0x00 and Register 0x01. The PLL_CLK_CTRLx registers do not change state.	0x0	RW
		0	Normal Operation.		
		1	Device in Reset.		
[2:1]	MCS		Master Clock Select. MCLKI/XTALI pin functionality (PLL active), master clock rate setting. The following values are for the f_S rate range from 32 kHz to 48 kHz. See Table 12 for details when using other f_S selections.	0x0	RW
		00	$256 \times f_s$ MCLK (44.1 kHz or 48 kHz).		
		01	$384 \times f_5$ MCLK (44.1 kHz or 48 kHz).		
		10	$512 \times f_S$ MCLK (44.1 kHz or 48 kHz).		
		11	$768 \times f_S$ MCLK (44.1 kHz or 48 kHz).		
0	PUP		Master Power-Up Control. This bit must be set to 1 as the first register	0x0	RW
			write to power up the IC.		
		0	Master Power-Down.		
		1	Master Power-Up.		

PLL AND CLOCK CONTROL 1 REGISTER

Address: 0x01, Reset: 0x2A, Name: PLL_CLK_CTRL1

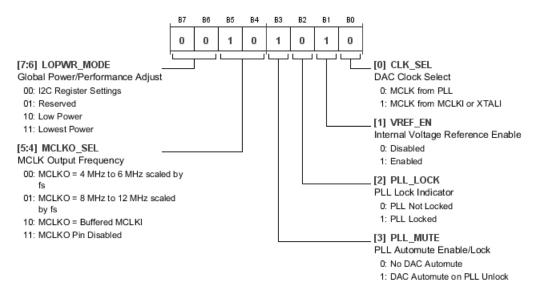


Table 26. Bit Descriptions for PLL_CLK_CTRL1

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:6]	LOPWR_MODE		Global Power/Performance Adjust. These bits adjust the power consumption and performance level for all 12 DAC channels simultaneously. See the Digital-to-Analog Converters (DACS) section for more details.	0x0	RW
		00	I ² C register settings.		
		01	Reserved.		
		10	Low Power.		
		11	Lowest Power.		
[5:4]	MCLKO_SEL		MCLKO Output Frequency. Frequency selection for MCLKO pin. See the Clock Signals section for more details.	0x2	RW
		00	MCLKO = 4 MHz to 6 MHz scaled by fs.		
		01	$MCLKO = 8 MHz$ to 12 MHz scaled by f_s .		
		10	MCLKO = Buffered MCLKI.		
		11	MCLKO Pin Disabled.		
3	PLL_MUTE		PLL Automute Enable/Lock. This bit enables the PLL lock automute function.	0x1	RW
		0	No DAC Automute.		
		1	DAC Automute on PLL Unlock.		
2	PLL_LOCK		PLL Lock Indicator.	0x0	R
		0	PLL Not Locked.		
		1	PLL Locked.		
1	VREF_EN		Internal Voltage Reference Enable. The internal voltage reference powers the common mode for the ADAU1962. Disabling this bit allows the user to drive the CM pin with an outside voltage source.	0x1	RW
		0	Disabled.		
		1	Enabled.		
0	CLK_SEL		DAC Clock Select. Selects PLL or direct master clock mode.	0x0	RW
		0	MCLK from PLL.		
		1	MCLK from MCLKI or XTALI.		

BLOCK POWER-DOWN AND THERMAL SENSOR CONTROL 1 REGISTER

Address: 0x02, Reset: 0xA0, Name: PDN_THRMSENS_CTRL_1

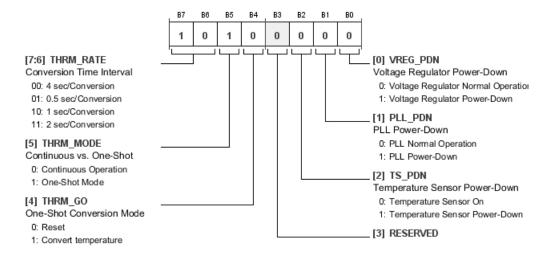


Table 27. Bit Descriptions for PDN_THRMSENS_CTRL_1

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:6]	THRM_RATE		Conversion Time Interval. When THRM_MODE = 0, the THRM_RATE bits control the	0x2	RW
			time interval between temperature conversions.		
		00	4 sec/Conversion.		
		01	0.5 sec/Conversion.		
		10	1 sec/Conversion.		
		11	2 sec/Conversion.		
5	THRM_MODE		Continuous vs. One Shot. This bit determines whether the temperature conversions occur continuously or only when commanded. To perform one shot temperature conversions, set this bit to 1.	0x1	RW
		0	Continuous Operation.		
		1	One Shot Mode.		
4	THRM_GO		One Shot Conversion Mode. When in one shot conversion mode, THRM_MODE = 1, the THRM_GO bit must be set to 0 followed by a write of 1. This sequence results in a single temperature conversion. The temperature data is available 120 ms after writing a 1 to this bit.	0x0	RW
		0	Reset.		
		1	Convert Temperature.		
2	TS_PDN		Temperature Sensor Power-Down.	0x0	RW
		0	Temperature Sensor On.		
		1	Temperature Sensor Power-Down.		
1	PLL_PDN		PLL Power-Down.	0x0	RW
		0	PLL Normal Operation.		
		1	PLL Power-Down.		
0	VREG_PDN		Voltage Regulator Power-Down.	0x0	RW
		0	Voltage Regulator Normal Operation.		
		1	Voltage Regulator Power-Down.		

POWER-DOWN CONTROL 2 REGISTER

Address: 0x03, Reset: 0x00, Name: PDN_CTRL2

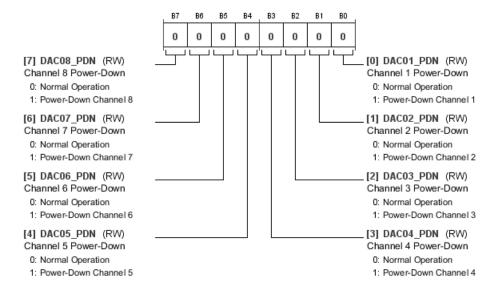


Table 28. Bit Descriptions for PDN_CTRL2

Bit No.	Bit Name	Settings	Description	Reset	Access
7	DAC08_PDN		Channel 8 Power-Down	0x0	RW
		0	Normal Operation		
		1	Power-Down Channel 8		
6	DAC07_PDN		Channel 7 Power-Down	0x0	RW
		0	Normal Operation		
		1	Power-Down Channel 7		
5	DAC06_PDN		Channel 6 Power-Down	0x0	RW
		0	Normal Operation		
		1	Power-Down Channel 6		
4	DAC05_PDN		Channel 5 Power-Down	0x0	RW
		0	Normal Operation		
		1	Power-Down Channel 5		
3	DAC04_PDN		Channel 4 Power-Down	0x0	RW
		0	Normal Operation		
		1	Power-Down Channel 4		
2	DAC03_PDN		Channel 3 Power-Down	0x0	RW
		0	Normal Operation		
		1	Power-Down Channel 3		
1	DAC02_PDN		Channel 2 Power-Down	0x0	RW
		0	Normal Operation		
		1	Power-Down Channel 2		
0	DAC01_PDN		Channel 1 Power-Down	0x0	RW
		0	Normal Operation		
		1	Power-Down Channel 1		

POWER-DOWN CONTROL 3 REGISTER

Address: 0x04, Reset: 0x00, Name: PDN_CTRL3

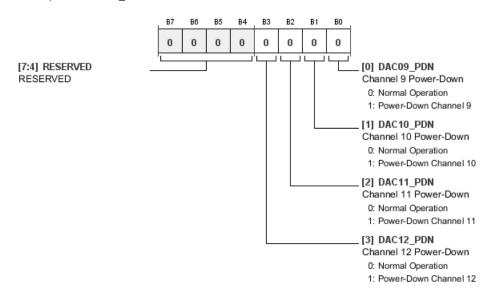


Table 29. Bit Descriptions for PDN_CTRL3

Bit No.	Bit Name	Settings	Description	Reset	Access
3	DAC12_PDN		Channel 12 Power-Down	0x0	RW
		0	Normal Operation		
		1	Power-Down Channel 12		
2	DAC11_PDN		Channel 11 Power-Down	0x0	RW
		0	Normal Operation		
		1	Power-Down Channel 11		
1	DAC10_PDN		Channel 10 Power-Down	0x0	RW
		0	Normal Operation		
		1	Power-Down Channel 10		
0	DAC09_PDN		Channel 9 Power-Down	0x0	RW
		0	Normal Operation		
		1	Power-Down Channel 9		

THERMAL SENSOR TEMPERATURE READOUT REGISTER

Temperature Readout

Address: 0x05, Reset: 0x00, Name: THRM_TEMP_STAT

The thermal sensor temperature readout range is -60° C to $+140^{\circ}$ C with a 1°C step size. Read this register and convert the hexadecimal or binary TEMP bit value into decimal form; then subtract 60 from this decimal conversion. The result is the temperature in degrees Celsius.

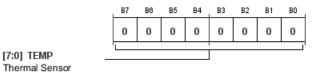


Table 30. Bit Descriptions for THRM_TEMP_STAT

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:0]	TEMP		Thermal Sensor Temperature Readout. –60°C to +140°C range, 1°C step size. To convert the TEMP code to temperature, use the equation (TEMP – 60).	0x00	R

DAC CONTROL 0 REGISTER

Address: 0x06, Reset: 0x01, Name: DAC_CTRL0

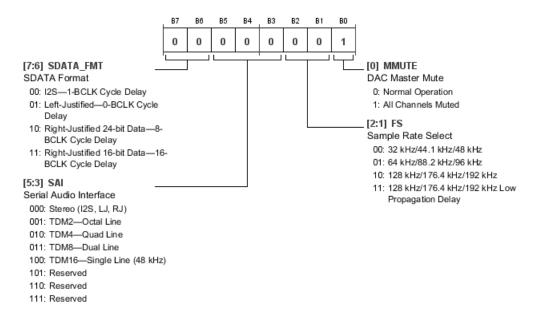


Table 31. Bit Descriptions for DAC_CTRL0

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:6]	SDATA_FMT		SDATA Format. Only used when SAI = 000.	0x0	RW
		00	I ² S = 1 BCLK Cycle Delay.		
		01	Left Justified = 0 BCLK Cycle Delay.		
		10	Right Justified 24-Bit Data = 8 BCLK Cycle Delay.		
		11	Right Justified 16-Bit Data = 16 BCLK Cycle Delay.		
[5:3]	SAI		Serial Audio Interface. When SAI = 000, the SDATA_FMT bits control the stereo SDATA format.	RW	
		000	Stereo (I ² S, left justified, right justified).		
		001	TDM2 = Octal Line.		
		010	TDM4 = Quad Line.		
		011	TDM8 = Dual Line.		
		100	TDM16 = Single Line (48 kHz).		
		101	Reserved.		
		110	Reserved.		
		111	Reserved.		
[2:1]	FS		Sample Rate Select.	0x0	RW
		00	32 kHz/44.1 kHz/48 kHz.		
		01	64 kHz/88.2 kHz/96 kHz.		
		10	128 kHz/176.4 kHz/192 kHz.		
		11	128 kHz/176.4 kHz/192 kHz Low Propagation Delay.		
0	MMUTE		DAC Master Mute.	0x1	RW
		0	Normal Operation.		
		1	All Channels Muted.		

DAC CONTROL 1 REGISTER

Address: 0x07, Reset: 0x00, Name: DAC_CTRL1

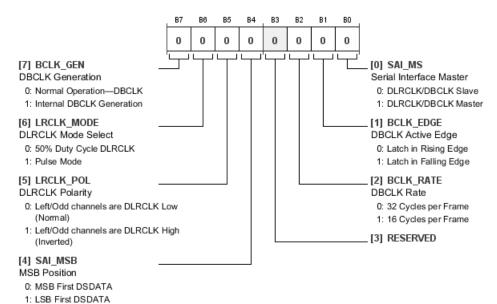


Table 32. Bit Descriptions for DAC_CTRL1

Bit No.	Bit Name	Settings	Description	Reset	Access
7	BCLK_GEN		DBCLK Generation. When the PLL is locked to the DLRCLK pin, it is possible to	0x0	RW
			run the ADAU1962 without an external bit clock.		
		0	Normal Operation—DBCLK.		
		1	Internal DBCLK Generation.		
6	LRCLK_MODE		DLRCLK Mode Select. Only valid for TDM modes.	0x0	RW
		0	50% Duty Cycle DLRCLK.		
		1	Pulse Mode.		
5	LRCLK_POL		DLRCLK Polarity. Allows the swapping of data between channels.	0x0	RW
		0	Left/Odd Channels Are DLRCLK Low (Normal).		
		1	Left/Odd Channels Are DLRCLK High (Inverted).		
4	SAI_MSB		MSB Position.	0x0	RW
		0	MSB First DSDATAx.		
		1	LSB First DSDATAx.		
2	BCLK_RATE		DBCLK Rate. Number of bit clock cycles per channel slot. Used only for	0x0	RW
			generating bit clock in master mode operation (SAI_MS = 1).		
		0	32 Cycles per Frame.		
		1	16 Cycles per Frame.		
1	BCLK_EDGE		DBCLK Active Edge. Adjusts the polarity of the bit clock leading edge.	0x0	RW
		0	Latch in Rising Edge.		
		1	Latch in Falling Edge.		
0	SAI_MS		Serial Interface Master. Both the DLRCLK and DBCLK pins become the master	0x0	RW
			when enabled.		
		0	DLRCLK/DBCLK Slave.		
		1	DLRCLK/DBCLK Master.		

DAC CONTROL 2 REGISTER

Address: 0x08, Reset: 0x06, Name: DAC_CTRL2

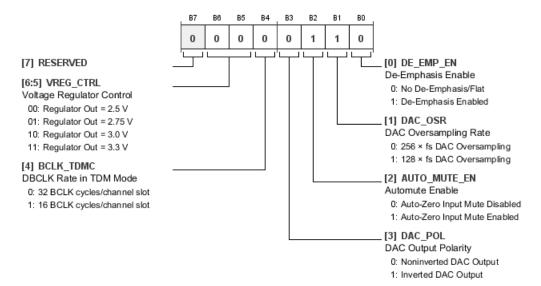


Table 33. Bit Descriptions for DAC_CTRL2

Bit No.	Bit Name	Settings	Description	Reset	Access
[6:5]	VREG_CTRL		Voltage Regulator Control. Selects the regulator output voltage.	0x0	RW
		00	Regulator Output = 2.5 V.		
		01	Regulator Output = 2.75 V.		
		10	Regulator Output = 3.0 V.		
		11	Regulator Output = 3.3 V.		
4	BCLK_TDMC		DBCLK Rate in TDM Mode. Number of bit clock cycles per channel slot when in TDM mode.	0x0	RW
		0	32 BCLK Cycles/Channel Slot.		
		1	16 BCLK Cycles/Channel Slot.		
3	DAC_POL		DAC Output Polarity. This is a global switch of DAC polarity.	0x0	RW
		0	Noninverted DAC Output.		
		1	Inverted DAC Output.		
2	AUTO_MUTE_EN		Automute Enable. Automatically mutes the DACs when 1024 consecutive zero input samples are received. This is independent per channel.	0x1	RW
		0	Auto-Zero Input Mute Disabled.		
		1	Auto-Zero Input Mute Enabled.		
1	DAC_OSR		DAC Oversampling Rate (OSR). OSR selection.	0x1	RW
		0	$256 \times f_S$ DAC Oversampling.		
		1	128 × f _s DAC Oversampling.		
0	DE_EMP_EN		De-Emphasis Enable.	0x0	RW
		0	No De-Emphasis/Flat.		
		1	De-Emphasis Enabled.		

DAC INDIVIDUAL CHANNEL MUTES 1 REGISTER

Address: 0x09, Reset: 0x00, Name: DAC_MUTE1

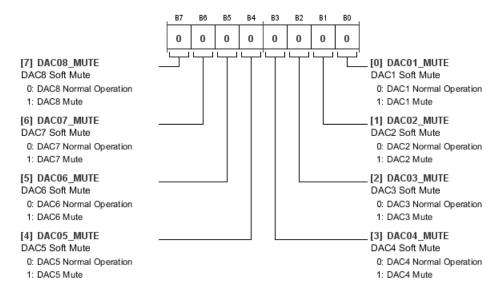


Table 34. Bit Descriptions for DAC_MUTE1

Bit No.	Bit Name	Settings	Description	Reset	Access
7	DAC08_MUTE		DAC8 Soft Mute	0x0	RW
		0	DAC8 Normal Operation		
		1	DAC8 Mute		
6	DAC07_MUTE		DAC7 Soft Mute	0x0	RW
		0	DAC7 Normal Operation		
		1	DAC7 Mute		
5	DAC06_MUTE		DAC6 Soft Mute	0x0	RW
		0	DAC6 Normal Operation		
		1	DAC6 Mute		
4	DAC05_MUTE		DAC5 Soft Mute	0x0	RW
		0	DAC5 Normal Operation		
		1	DAC5 Mute		
3	DAC04_MUTE		DAC4 Soft Mute	0x0	RW
		0	DAC4 Normal Operation		
		1	DAC4 Mute		
2	DAC03_MUTE		DAC3 Soft Mute	0x0	RW
		0	DAC3 Normal Operation		
		1	DAC3 Mute		
1	DAC02_MUTE		DAC2 Soft Mute	0x0	RW
		0	DAC2 Normal Operation		
		1	DAC2 Mute		
0	DAC01_MUTE		DAC1 Soft Mute	0x0	RW
		0	DAC1 Normal Operation		
		1	DAC1 Mute		

DAC INDIVIDUAL CHANNEL MUTES 2 REGISTER

Address: 0x0A, Reset: 0x00, Name: DAC_MUTE2

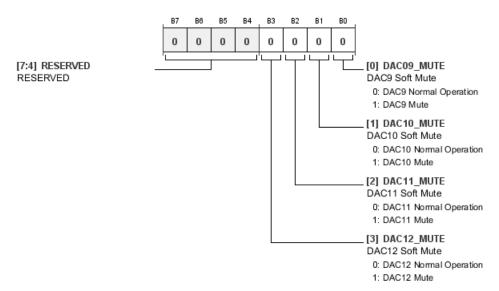
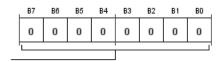



Table 35. Bit Descriptions for DAC_MUTE2

Bit No.	Bit Name	Settings	Description	Reset	Access
3	DAC12_MUTE		DAC12 Soft Mute	0x0	RW
		0	DAC12 Normal Operation		
		1	DAC12 Mute		
2	DAC11_MUTE		DAC11 Soft Mute	0x0	RW
		0	DAC11 Normal Operation		
		1	DAC11 Mute		
1	DAC10_MUTE		DAC10 Soft Mute	0x0	RW
		0	DAC10 Normal Operation		
		1	DAC10 Mute		
0	DAC09_MUTE		DAC9 Soft Mute	0x0	RW
		0	DAC9 Normal Operation		
		1	DAC9 Mute		

MASTER VOLUME CONTROL REGISTER

Address: 0x0B, Reset: 0x00, Name: DACMSTR_VOL

[7:0] DACMSTR_VOL Master Volume Control 00000000: 0 dB (default)

00000001: -0.375 dB 00000010: -0.750 dB 11111110: -95.250 dB 11111111: -95.625 dB

Table 36. Bit Descriptions for DACMSTR_VOL

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:0]	DACMSTR_VOL		Master Volume Control. Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 53 for a complete list of the volume settings.	0x00	RW
		00000000	0 dB (default).		
		00000001	−0.375 dB.		
		00000010	-0.750 dB.		
		11111110	−95.250 dB.		
		11111111	−95.625 dB.		

DAC1 VOLUME CONTROL REGISTER

Address: 0x0C, Reset: 0x00, Name: DAC01_VOL

 B7
 B6
 B5
 B4
 B3
 B2
 B1
 B0

 O
 O
 O
 O
 O
 O
 O
 O
 O

[7:0] DAC01_VOL

DAC Volume Control Channel 1

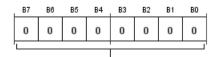

00000000: 0 dB (default) 00000001: ~0.375 dB 00000010: ~0.750 dB 11111110: ~95.250 dB 11111111: ~95.625 dB

Table 37. Bit Descriptions for DAC01_VOL

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:0]	DAC01_VOL		DAC Volume Control Channel 1. Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 53 for a complete list of the volume settings.	0x00	RW
		00000000	0 dB (default).		
		00000001	−0.375 dB.		
		00000010	−0.750 dB.		
		11111110	−95.250 dB.		
		11111111	−95.625 dB.		

DAC2 VOLUME CONTROL REGISTER

Address: 0x0D, Reset: 0x00, Name: DAC02_VOL

[7:0] DAC02_VOL

DAC Volume Control Channel 2

00000000: 0 dB (default) 00000001: -0.375 dB 00000010: -0.750 dB

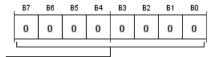

11111110: -95.250 dB 11111111: -95.625 dB

Table 38. Bit Descriptions for DAC02_VOL

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:0]	DAC02_VOL		DAC Volume Control Channel 2. Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 53 for a complete list of the volume settings.	0x00	RW
		00000000	0 dB (default).		
		00000001	−0.375 dB.		
		00000010	−0.750 dB.		
		11111110	−95.250 dB.		
		11111111	−95.625 dB.		

DAC3 VOLUME CONTROL REGISTER

Address: 0x0E, Reset: 0x00, Name: DAC03_VOL

[7:0] DAC03_VOL

DAC Volume Control Channel 3

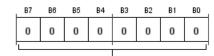

00000000: 0 dB (default) 00000001: -0.375 dB 00000010: -0.750 dB 11111110: -95.250 dB 11111111: -95.625 dB

Table 39. Bit Descriptions for DAC03_VOL

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:0]	DAC03_VOL		DAC Volume Control Channel 3. Each 1-bit step corresponds to a 0.375 dB change	0x00	RW
			in volume. See Table 53 for a complete list of the volume settings.		
		00000000	0 dB (default).		
		00000001	−0.375 dB.		
		00000010	−0.750 dB.		
		11111110	−95.250 dB.		
		11111111	−95.625 dB.		

DAC4 VOLUME CONTROL REGISTER

Address: 0x0F, Reset: 0x00, Name: DAC04_VOL

[7:0] DAC04_VOL

DAC Volume Control Channel 4

00000000: 0 dB (default) 00000001: -0.375 dB 00000010: -0.750 dB 11111110: -95.250 dB

11111111: -95.625 dB

Table 40. Bit Descriptions for DAC04_VOL

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:0]	DAC04_VOL		DAC Volume Control Channel 4. Each 1-bit step corresponds to a 0.375 dB change	0x00	RW
			in volume. See Table 53 for a complete list of the volume settings.		
		00000000	0 dB (default).		
		00000001	−0.375 dB.		
		00000010	−0.750 dB.		
		11111110	−95.250 dB.		
		11111111	−95.625 dB.		

DAC5 VOLUME CONTROL REGISTER

Address: 0x10, Reset: 0x00, Name: DAC05_VOL

 87
 88
 85
 84
 83
 82
 81
 80

 0
 0
 0
 0
 0
 0
 0
 0
 0

[7:0] DAC05_VOL

DAC Volume Control Channel 5

00000000: 0 dB (default) 00000001: -0.375 dB 00000010: -0.750 dB 11111110: -95.250 dB 11111111: -95.625 dB

Table 41. Bit Descriptions for DAC05_VOL

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:0]	DAC05_VOL		DAC Volume Control Channel 5. Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 53 for a complete list of the volume settings.	0x00	RW
		00000000	0 dB (default).		
		00000001	−0.375 dB.		
		00000010	−0.750 dB.		
		11111110	−95.250 dB.		
		11111111	−95.625 dB.		

DAC6 VOLUME CONTROL REGISTER

Address: 0x11, Reset: 0x00, Name: DAC06_VOL

 B7
 B6
 B5
 B4
 B3
 B2
 B1
 B0

 0
 0
 0
 0
 0
 0
 0
 0
 0

[7:0] DAC06_VOL

DAC Volume Control Channel 6

00000000: 0 dB (default) 00000001: -0.375 dB 00000010: -0.750 dB 11111110: -95.250 dB

11111111: -95.625 dB

Table 42. Bit Descriptions for DAC06_VOL

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:0]	DAC06_VOL		DAC Volume Control Channel 6. Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 53 for a complete list of the volume settings.	0x00	RW
		00000000	0 dB (default).		
		00000001	−0.375 dB.		
		00000010	−0.750 dB.		
		11111110	−95.250 dB.		
		11111111	−95.625 dB.		

DAC7 VOLUME CONTROL REGISTER

Address: 0x12, Reset: 0x00, Name: DAC07_VOL

 B7
 B6
 B5
 B4
 B3
 B2
 B1
 B0

 0
 0
 0
 0
 0
 0
 0
 0
 0

[7:0] DAC07_VOL

DAC Volume Control Channel 7

00000000: 0 dB (default) 00000001: -0.375 dB 00000010: -0.750 dB 11111110: -95.250 dB 11111111: -95.625 dB

Table 43. Bit Descriptions for DAC07_VOL

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:0]	DAC07_VOL		DAC Volume Control Channel 7. Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 53 for a complete list of the volume settings.	0x00	RW
		00000000	0 dB (default).		
		00000001	−0.375 dB.		
		00000010	−0.750 dB.		
		11111110	−95.250 dB.		
		11111111	−95.625 dB.		

DAC8 VOLUME CONTROL REGISTER

Address: 0x13, Reset: 0x00, Name: DAC08_VOL

 B7
 B6
 B5
 B4
 B3
 B2
 B1
 B0

 O
 O
 O
 O
 O
 O
 O
 O

[7:0] DAC08_VOL

DAC Volume Control Channel 8

00000000: 0 dB (default) 00000001: -0.375 dB 00000010: -0.750 dB 11111110: -95.250 dB 11111111: -95.625 dB

Table 44. Bit Descriptions for DAC08_VOL

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:0]	DAC08_VOL		DAC Volume Control Channel 8. Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 53 for a complete list of the volume settings.	0x00	RW
		00000000	0 dB (default).		
		00000001	−0.375 dB.		
		00000010	−0.750 dB.		
		11111110	−95.250 dB.		
		11111111	−95.625 dB.		

DAC9 VOLUME CONTROL REGISTER

Address: 0x14, Reset: 0x00, Name: DAC09_VOL

 87
 86
 85
 84
 83
 82
 81
 80

 0
 0
 0
 0
 0
 0
 0
 0
 0

[7:0] DAC09_VOL

DAC Volume Control Channel 9

00000000: 0 dB (default) 00000001: -0.375 dB 00000010: -0.750 dB 11111110: -95.250 dB 11111111: -95.625 dB

Table 45. Bit Descriptions for DAC09_VOL

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:0]	DAC09_VOL		DAC Volume Control Channel 9. Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 53 for a complete list of the volume settings.	0x00	RW
		00000000	0 dB (default).		
		00000001	−0.375 dB.		
		00000010	−0.750 dB.		
		11111110	−95.250 dB.		
		11111111	−95.625 dB.		

DAC10 VOLUME CONTROL REGISTER

Address: 0x15, Reset: 0x00, Name: DAC10_VOL

 B7
 B6
 B5
 B4
 B3
 B2
 B1
 B0

 0
 0
 0
 0
 0
 0
 0
 0

[7:0] DAC10_VOL

DAC Volume Control Channel 10

00000000: 0 dB (default) 00000001: -0.375 dB 00000010: -0.750 dB 11111110: -95.250 dB

11111111: -95.625 dB

Table 46. Bit Descriptions for DAC10_VOL

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:0]	DAC10_VOL		DAC Volume Control Channel 10. Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 53 for a complete list of the volume settings.	0x00	RW
		00000000	0 dB (default).		
		00000001	−0.375 dB.		
		00000010	−0.750 dB.		
		11111110	−95.250 dB.		
		11111111	−95.625 dB.		

DAC11 VOLUME CONTROL REGISTER

Address: 0x16, Reset: 0x00, Name: DAC11_VOL

 B7
 B6
 B5
 B4
 B3
 B2
 B1
 B0

 0
 0
 0
 0
 0
 0
 0
 0
 0

[7:0] DAC11_VOL

DAC Volume Control Channel 11

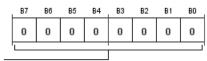

00000000: 0 dB (default) 00000001: -0.375 dB 00000010: -0.750 dB 11111110: -95.250 dB 11111111: -95.625 dB

Table 47. Bit Descriptions for DAC11_VOL

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:0]	DAC11_VOL		DAC Volume Control Channel 11. Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 53 for a complete list of the volume settings.	0x00	RW
		00000000	0 dB (default).		
		00000001	−0.375 dB.		
		00000010	−0.750 dB.		
		11111110	−95.250 dB.		
		11111111	−95.625 dB.		

DAC12 VOLUME CONTROL REGISTER

Address: 0x17, Reset: 0x00, Name: DAC12_VOL

[7:0] DAC12_VOL

DAC Volume Control Channel 12

00000000: 0 dB (default) 00000001: -0.375 dB 00000010: -0.750 dB 11111110: -95.250 dB 11111111: -95.625 dB

Table 48. Bit Descriptions for DAC12_VOL

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:0]	DAC12_VOL		DAC Volume Control Channel 12. Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 53 for a complete list of the volume settings.	0x00	RW
		00000000	0 dB (default).		
		00000001	−0.375 dB.		
		00000010	−0.750 dB.		
		11111110	−95.250 dB.		
		11111111	−95.625 dB.		

COMMON MODE AND PAD STRENGTH REGISTER

Address: 0x1C, Reset: 0x02, Name: CM_SEL_PAD_STRGTH

Table 49. Bit Descriptions for CM_SEL_PAD_STRGTH

Bit No.	Bit Name	Settings	Description	Reset	Access
5	PAD_DRV		Output Pad Drive Strength Control. Pad strength is stated for IOVDD = 5 V.	0x0	RW
		0	4 mA Drive for All Pads.		
		1	8 mA Drive for All Pads.		

DAC POWER ADJUST 1 REGISTER

Address: 0x1D, Reset: 0xAA, Name: DAC_POWER1

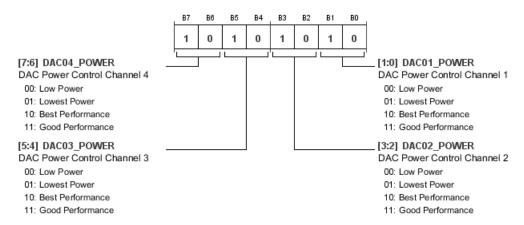


Table 50. Bit Descriptions for DAC_POWER1

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:6]	DAC04_POWER		DAC Power Control Channel 4	0x2	RW
		00	Low Power		
		01	Lowest Power		
		10	Best Performance		
		11	Good Performance		
[5:4]	DAC03_POWER		DAC Power Control Channel 3	0x2	RW
		00	Low Power		
		01	Lowest Power		
		10	Best Performance		
		11	Good Performance		
[3:2]	DAC02_POWER		DAC Power Control Channel 2	0x2	RW
		00	Low Power		
		01	Lowest Power		
		10	Best Performance		
		11	Good Performance		
[1:0]	DAC01_POWER		DAC Power Control Channel 1	0x2	RW
		00	Low Power		
		01	Lowest Power		
		10	Best Performance		
		11	Good Performance		

DAC POWER ADJUST 2 REGISTER

Address: 0x1E, Reset: 0xAA, Name: DAC_POWER2

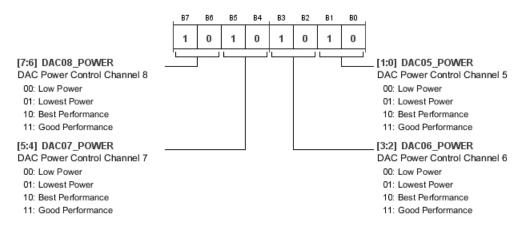


Table 51. Bit Descriptions for DAC_POWER2

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:6]	DAC08_POWER		DAC Power Control Channel 8	0x2	RW
		00	Low Power		
		01	Lowest Power		
		10	Best Performance		
		11	Good Performance		
[5:4]	DAC07_POWER		DAC Power Control Channel 7	0x2	RW
		00	Low Power		
		01	Lowest Power		
		10	Best Performance		
		11	Good Performance		
[3:2]	DAC06_POWER		DAC Power Control Channel 6	0x2	RW
		00	Low Power		
		01	Lowest Power		
		10	Best Performance		
		11	Good Performance		
[1:0]	DAC05_POWER		DAC Power Control Channel 5	0x2	RW
		00	Low Power		
		01	Lowest Power		
		10	Best Performance		
		11	Good Performance		

DAC POWER ADJUST 3 REGISTER

Address: 0x1F, Reset: 0xAA, Name: DAC_POWER3

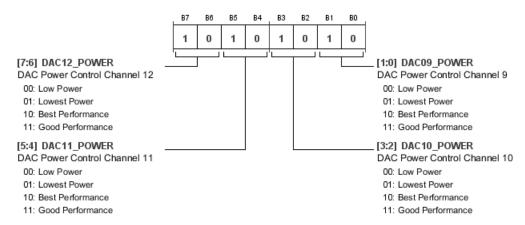


Table 52. Bit Descriptions for DAC_POWER3

Bit No.	Bit Name	Settings	Description	Reset	Access
[7:6]	DAC12_POWER		DAC Power Control Channel 12	0x2	RW
		00	Low Power		
		01	Lowest Power		
		10	Best Performance		
		11	Good Performance		
[5:4]	DAC11_POWER		DAC Power Control Channel 11	0x2	RW
		00	Low Power		
		01	Lowest Power		
		10	Best Performance		
		11	Good Performance		
[3:2]	DAC10_POWER		DAC Power Control Channel 10	0x2	RW
		00	Low Power		
		01	Lowest Power		
		10	Best Performance		
		11	Good Performance		
[1:0]	DAC09_POWER		DAC Power Control Channel 9	0x2	RW
		00	Low Power		
		01	Lowest Power		
		10	Best Performance		
		11	Good Performance		

Table 53. Volume Settings

Table 53. Volue	Hex Value	Volume Attenuation (dB)	Binary Value	Hex Value	Volume Attenuation (dB)
00000000	00	0	00110000	30	-18
00000001	01	-0.375	00110001	31	-18.375
00000010	02	-0.75	00110010	32	-18.75
00000011	03	-1.125	00110011	33	-19.125
00000100	04	-1.5	00110100	34	_19.5
00000101	05	-1.875	00110101	35	-19.875
00000110	06	-2.25	00110110	36	-20.25
00000111	07	-2.625	00110111	37	-20.625
00001000	08	-3	00111000	38	–21
00001001	09	_3.375	00111001	39	_21.375
00001010	0A	-3.75	00111010	3A	_21.75
00001011	OB	-4.125	00111011	3B	-22.125
00001100	0C	-4.5	00111100	3C	-22.5
00001101	0D	_4.875	00111101	3D	-22.875
00001101	0E	-5.25	00111110	3E	-23.25
00001111	0F	-5.625	00111111	3F	-23.625
00011111	10	-6	01000000	40	-24
00010000	11	_6.375	01000001	41	-24.375
00010001	12	-6.75	0100001	42	-24.75
00010010	13	-7.125	01000010	42	-25.125
	14	-7.123 -7.5	0100011	43	-25.123 -25.5
00010100 00010101	15	-7.875	01000100	45	
00010101	16		01000101	46	-25.875 26.35
		-8.25 9.635			-26.25 26.625
00010111	17	-8.625	01000111	47	-26.625
00011000	18	_9 	01001000	48	-27 27 275
00011001	19	-9.375	01001001	49	-27.375
00011010	1A	-9.75 10.135	01001010	4A	-27.75
00011011	1B	-10.125	01001011	4B	-28.125
00011100	1C	-10.5	01001100	4C	-28.5
00011101	1D	-10.875	01001101	4D	-28.875
00011110	1E	-11.25	01001110	4E	-29.25
00011111	1F	-11.625	01001111	4F	-29.625
00100000	20	_12 	01010000	50	-30
00100001	21	-12.375	01010001	51	-30.375
00100010	22	_12.75	01010010	52	-30.75
00100011	23	-13.125	01010011	53	-31.125
00100100	24	-13.5	01010100	54	-31.5
00100101	25	_13.875	01010101	55	_31.875
00100110	26	-14.25	01010110	56	-32.25
00100111	27	-14.625	01010111	57	-32.625
00101000	28	–15	01011000	58	-33
00101001	29	-15.375	01011001	59	-33.375
00101010	2A	-15.75	01011010	5A	-33.75
00101011	2B	-16.125	01011011	5B	-34.125
00101100	2C	-16.5	01011100	5C	-34.5
00101101	2D	-16.875	01011101	5D	-34.875
00101110	2E	-17.25	01011110	5E	-35.25
00101111	2F	-17.625	01011111	5F	-35.625

Binary Value	Hex Value	Volume Attenuation (dB)	Binary Value	Hex Value	Volume Attenuation (dB)
01100000	60	-36	10010000	90	-54
01100001	61	-36.375	10010001	91	-54.375
01100010	62	-36.75	10010010	92	-54.75
01100011	63	−37.125	10010011	93	-55.125
01100100	64	-37.5	10010100	94	-55.5
01100101	65	-37.875	10010101	95	-55.875
01100110	66	-38.25	10010110	96	-56.25
01100111	67	-38.625	10010111	97	-56.625
01101000	68	-39	10011000	98	–57
01101001	69	-39.375	10011001	99	-57.375
01101010	6A	-39.75	10011010	9A	-57.75
01101011	6B	-40.125	10011011	9B	-58.125
01101100	6C	-40.5	10011100	9C	-58.5
01101101	6D	-40.875	10011101	9D	-58.875
01101110	6E	-41.25	10011110	9E	-59.25
01101111	6F	-41.625	10011111	9F	-59.625
01110000	70	-42	10100000	A0	-60
01110001	71	-42.375	10100001	A1	-60.375
01110010	72	-42.75	10100010	A2	-60.75
01110011	73	-43.125	10100011	A3	-61.125
01110100	74	-43.5	10100100	A4	-61.5
01110101	75	-43.875	10100101	A5	-61.875
01110110	76	-44.25	10100110	A6	-62.25
01110111	77	-44.625	10100111	A7	-62.625
01111000	78	-45	10101000	A8	-63
01111001	79	-45.375	10101001	A9	-63.375
01111010	7A	-45.75	10101010	AA	-63.75
01111011	7B	-46.125	10101011	AB	-64.125
01111100	7C	-46.5	10101100	AC	-64.5
01111101	7D	-46.875	10101101	AD	-64.875
01111110	7E	-47.25	10101110	AE	-65.25
01111111	7F	-47.625	10101111	AF	-65.625
10000000	80	_ -48	10110000	B0	-66
10000001	81	-48.375	10110001	B1	-66.375
10000010	82	-48.75	10110010	B2	-66.75
10000011	83	-49.125	10110011	B3	-67.125
10000100	84	-49.5	10110100	B4	-67.5
10000101	85	-49.875	10110101	B5	-67.875
10000110	86	-50.25	10110110	B6	-68.25
10000111	87	-50.625	10110111	B7	-68.625
10001000	88	_51	10111000	B8	-69
10001001	89	_51.375	10111001	B9	_69.375
10001010	8A	_51.75	10111010	BA	_69.75
10001011	8B	_52.125	10111011	BB	_70.125
10001100	8C	_52.5	10111100	BC	_70.5
10001101	8D	_52.875	10111101	BD	_70.875
10001110	8E	_53.25	10111110	BE	_71.25
10001111	8F	-53.625	10111111	BF	-71.625
	l			l .	

Binary Value	Hex Value	Volume Attenuation (dB)	Binary Value	Hex Value	Volume Attenuation (dB)
11000000	C0	-72	11100000	E0	-84
11000001	C1	-72.375	11100001	E1	-84.375
11000010	C2	-72.75	11100010	E2	-84.75
11000011	C3	-73.125	11100011	E3	-85.125
11000100	C4	-73.5	11100100	E4	-85.5
11000101	C5	-73.875	11100101	E5	-85.875
11000110	C6	-74.25	11100110	E6	-86.25
11000111	C7	-74.625	11100111	E7	-86.625
11001000	C8	-75	11101000	E8	-87
11001001	C9	-75.375	11101001	E9	-87.375
11001010	CA	-75.75	11101010	EA	-87.75
11001011	СВ	-76.125	11101011	EB	-88.125
11001100	CC	-76.5	11101100	EC	-88.5
11001101	CD	-76.875	11101101	ED	-88.875
11001110	CE	−77.25	11101110	EE	-89.25
11001111	CF	-77.625	11101111	EF	-89.625
11010000	D0	-78	11110000	F0	-90
11010001	D1	-78.375	11110001	F1	-90.375
11010010	D2	-78.75	11110010	F2	-90.75
11010011	D3	-79.125	11110011	F3	-91.125
11010100	D4	-79.5	11110100	F4	-91.5
11010101	D5	-79.875	11110101	F5	-91.875
11010110	D6	-80.25	11110110	F6	-92.25
11010111	D7	-80.625	11110111	F7	-92.625
11011000	D8	-81	11111000	F8	-93
11011001	D9	-81.375	11111001	F9	-93.375
11011010	DA	-81.75	11111010	FA	-93.75
11011011	DB	-82.125	11111011	FB	-94.125
11011100	DC	-82.5	11111100	FC	-94.5
11011101	DD	-82.875	11111101	FD	-94.875
11011110	DE	-83.25	11111110	FE	-95.25
11011111	DF	-83.625	11111111	FF	-95.625

PACKAGING AND ORDERING INFORMATION

OUTLINE DIMENSIONS

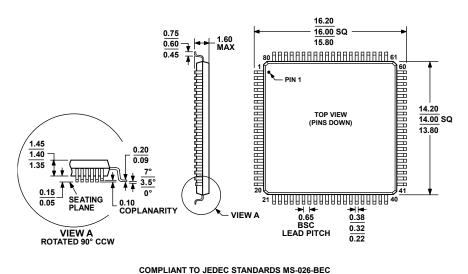


Figure 22. 80-Lead Low Profile Quad Flat Package [LQFP] (ST-80-2) Dimensions shown in millimeters

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Package Description	Package Option			
ADAU1962WBSTZ	−40°C to +105°C	80-Lead LQFP	ST-80-2			
ADAU1962WBSTZRL	−40°C to +105°C	80-Lead LQFP, 13"Tape and Reel	ST-80-2			
EVAL-ADAU1962Z		Evaluation Board				

¹ Z = RoHS Compliant Part.

AUTOMOTIVE PRODUCTS

The ADAU1962W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

I²C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

©2013-2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D11862-0-3/16(A)

www.analog.com/ADAU1962

 $^{^{2}}$ W = Qualified for Automotive Applications.