
GATE, w/ PROGRAMMABLE OUTPUT VOLTAGE 13 Gbps, FAST RISE TIME AND/NAND/OR/NOR

Typical Applications

The HMC722LC3C is ideal for:

- RF ATE Applications
- Broadband Test & Measurement
- Serial Data Transmission up to 13 Gbps
- Digital Logic Systems up to 13 GHz
- NRZ-to-RZ Conversion

Functional Diagram

Features

Supports High Data Rates: up to 13 Gbps Differential & Singe-Ended Operation Fast Rise and Fall Times: 19 / 18 ps Low Power Consumption: 230 mW typ.

Programmable Differential

Output Voltage Swing: 600 - 1100 mV

Propagation Delay: 95 ps Single Supply: -3.3V

16 Lead Ceramic 3x3mm SMT Package: 9mm²

General Description

The HMC722LC3C is an AND/NAND/OR/NOR function designed to support data transmission rates of up to 13 Gbps, and clock frequencies as high as 13 GHz. The HMC772LC3C may be easily configured to provide any of the following logic functions: AND, NAND, OR and NOR. The HMC722LC3C also features an output level control pin, VR, which allows for loss compensation or for signal level optimization.

All input signals to the HMC722LC3C are terminated with 50 Ohms to ground on-chip, and may be either AC or DC coupled. The differential outputs of the HMC722LC3C may be either AC or DC coupled. Outputs can be connected directly to a 50 Ohm to ground terminated system, while DC blocking capacitors may be used if the terminating system is 50 Ohms to a nonground DC voltage. The HMC722LC3C operates from a single -3.3V DC supply, and is available in a ceramic RoHS compliant 3x3 mm SMT package.

Electrical Specifications, $T_A = +25$ °C, Vee = -3.3V

Parameter	Conditions	Min.	Тур.	Max	Units
Power Supply Voltage		-3.6	-3.3	-3.0	V
Power Supply Current			70		mA
Maximum Data Rate			13		Gbps
Maximum Clock Rate			13		GHz
Input High Voltage		-0.5		0.5	V
Input Low Voltage		-1.0		0.0	V
Input Return Loss	Frequency <13 GHz		10		dB
	Single-Ended, peak-to-peak		550		mVp-p
Output Amplitude	Differential, peak-to-peak		1100		mVp-p
Output High Voltage			-10		mV

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC722LC3C* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

• HMC722LC3C Evaluation Board

DOCUMENTATION

Data Sheet

• HMC722LC3C Data Sheet

TOOLS AND SIMULATIONS

HMC722 IBIS Model

REFERENCE MATERIALS 🖵

Quality Documentation

- Package/Assembly Qualification Test Report: LC3, LC3B, LC3C (QTR: 2014-00376 REV: 01)
- Semiconductor Qualification Test Report: BiCMOS-C (QTR: 2013-00241)

DESIGN RESOURCES

- HMC722LC3C Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC722LC3C EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

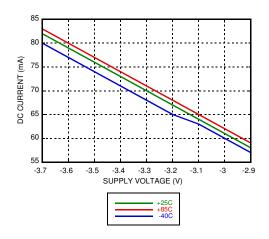
TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

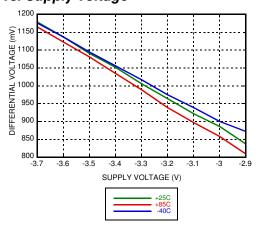
DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

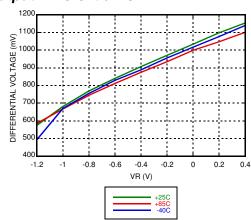
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

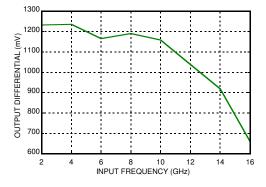

GATE, w/ PROGRAMMABLE OUTPUT VOLTAGE 13 Gbps, FAST RISE TIME AND/NAND/OR/NOR

Electrical Specifications, (continued)


Parameter	Conditions	Min.	Тур.	Max	Units
Output Low Voltage			-570		mV
Output Rise / Fall Time	Differential, 20% - 80%		19 / 18		ps
Output Return Loss	Frequency <13 GHz		10		dB
Small Signal Gain			27		dB
Random Jitter Jr	rms			0.2	ps rms
Deterministic Jitter, Jd	peak-to-peak, 2 ¹⁵ -1 PRBS input ^[1]		2		ps, p-p
Propagation Delay, td			95		ps

^[1] Deterministic jitter calculated by simultaneously measuring the jitter of a 300 mV, 13 GHz, 215-1 PRBS input, and a single-ended output


DC Current vs. Supply Voltage [1] [2]


Output Differential vs. Supply Voltage [1] [3]

Output Differential vs. VR [2]

Output Differential vs. Frequency [3]

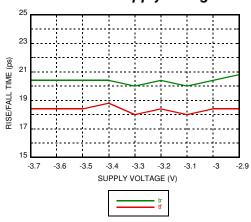
[1] VR = 0.0V

[2] Frequency = 13 GHz

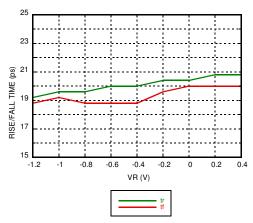
[3] Frequency = 10 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

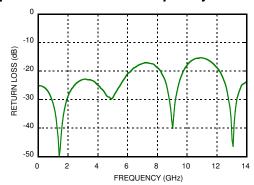
For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

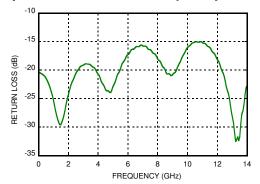


RoHS V


v04.0313

GATE, w/ PROGRAMMABLE OUTPUT VOLTAGE 13 Gbps, FAST RISE TIME AND/NAND/OR/NOR


Rise / Fall Time vs. Supply Voltage [3]

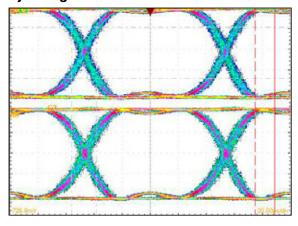

Rise / Fall Time vs. VR [3]

Input Return Loss vs. Frequency

Output Return Loss vs. Frequency

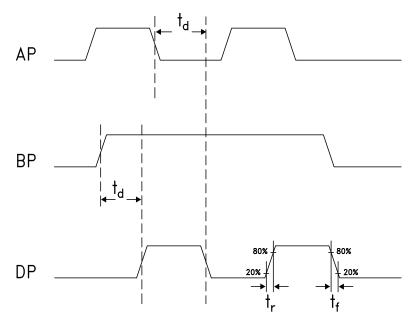
[1] VR = 0.0V

[2] Frequency = 13 GHz


[3] Frequency = 10 GHz

GATE, w/ PROGRAMMABLE OUTPUT VOLTAGE 13 Gbps, FAST RISE TIME AND/NAND/OR/NOR

Eye Diagram


[1] Test Conditions:

Pattern generated with an Agilent N4903A Serial BERT.

Eye Diagram presented on a Tektronix CSA 8000.

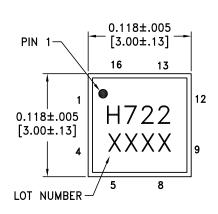
Device input = 10 Gbps PN code, Vin = 300mVp-p differential.

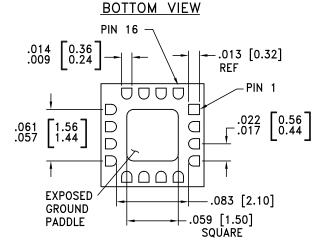
Timing Diagram

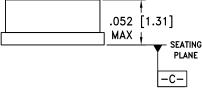
Truth Table

Input		Outputs	
A	В	D	
L	L	L	
L	Н	L	
Н	L	L	
Н	Н	Н	
Notes: A = AP - AN B = BP - BN D = DP - DN	H - Positive voltage level L - Negative voltage level		

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


GATE, w/ PROGRAMMABLE OUTPUT VOLTAGE 13 Gbps, FAST RISE TIME AND/NAND/OR/NOR


Absolute Maximum Ratings


Power Supply Voltage (Vee)	-3.7 5 V to +0. 5 V	
Input Signals	-2 V to +0.5 V	
Output Signals	-1.5 V to +1 V	
Storage Temperature	-65 °C to +150 °C	
Operating Temperature	-4 °C to +85 °C	
ESD Sensitivity (HBM)	Class 1C	

Outline Drawing

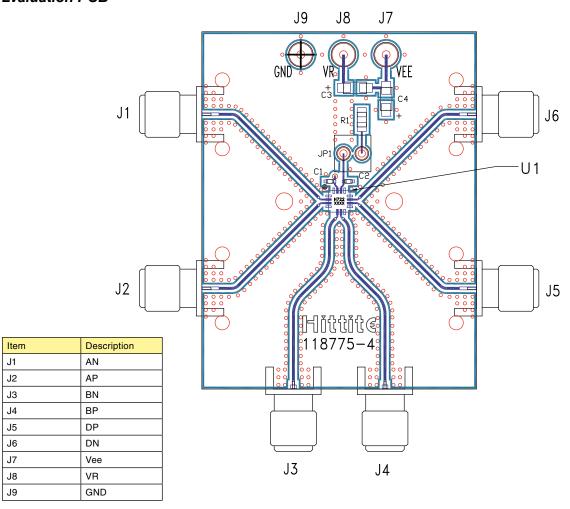
NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING:
- 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C- $\,$
- 6. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 7. GROUND PADDLE MUST BE SOLDERED TO Vee.

GATE, w/ PROGRAMMABLE OUTPUT VOLTAGE 13 Gbps, FAST RISE TIME AND/NAND/OR/NOR

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 4, 5, 8, 9, 12	GND	Signal Grounds	GND =
2, 3	AN, AP	Clock / Data Input A	GND 50 Ω AP, AN
6, 7	BN, BP	Clock / Data Input B	GND 500 BP, BN
10, 11	DP, DN	Clock / Data Output	GND O GND DP O DN
13, 16	GND	Supply Ground	GND =
14	VR	Output level control. Output level may be adjusted by either applying a voltage to VR per "Output Differential vs. VR" plot.	VR 0
15, Package Base	Vee	Negative Supply	


v04.0313

GATE, w/ PROGRAMMABLE OUTPUT VOLTAGE 13 Gbps, FAST RISE TIME AND/NAND/OR/NOR

Evaluation PCB

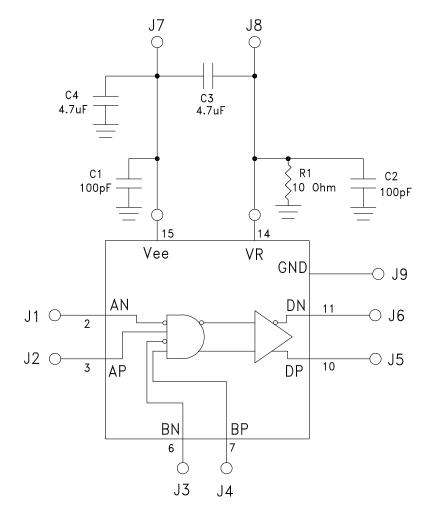
v04.0313

List of Materials for Evaluation PCB 118777 [1]

Item	Description	
J1 - J6	PCB Mount SMA RF Connectors	
J7 - J9	DC Pin	
C1, C2	100 pF Capacitor, 0402 Pkg.	
C3, C4	4.7 μF Capacitor, Tantalum	
R1	10 Ohm Resistor, 0603 Pkg.	
U1	HMC722LC3C High Speed Logic, AND / NAND / OR / NOR	
PCB [2]	118775 Evaluation Board	

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed package base should be connected to Vee. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.


^[2] Circuit Board Material: Rogers 4350

GATE, w/ PROGRAMMABLE OUTPUT VOLTAGE 13 Gbps, FAST RISE TIME AND/NAND/OR/NOR

Application Circuit

