

CMOS, 170 MHz, Triple, 10-Bit **High Speed Video DAC**

ADV7123-EP Enhanced Product

FEATURES

170 MSPS throughput rate Triple, 10-bit digital-to-analog converters (DACs)

 $-70 \text{ dB at } f_{CLK} = 50 \text{ MHz}; f_{OUT} = 1 \text{ MHz}$

 $-53 \text{ dB at } f_{CLK} = 140 \text{ MHz}; f_{OUT} = 40 \text{ MHz}$

RS-343A-/RS-170-compatible output

Complementary outputs

DAC output current range: 2.0 mA to 26.5 mA

TTL-compatible inputs Internal reference: 1.235 V Single-supply 3.3 V operation 48-lead LFCSP package

Low power dissipation: 30 mW minimum at 3 V Low power standby mode: 6 mW typical at 3 V

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)

Military temperature range: -55°C to +105°C

Controlled manufacturing baseline

One assembly/test site

One fabrication site

Product change notification

Qualification data available on request

APPLICATIONS

Digital video systems High resolution color graphics Digital radio modulation Image processing Instrumentation Video signal reconstruction

FUNCTIONAL BLOCK DIAGRAM

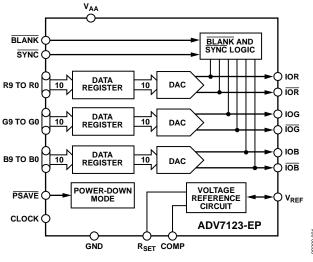


Figure 1.

GENERAL DESCRIPTION

The ADV7123-EP is a triple, high speed digital-to-analog converter (DAC) on a single monolithic chip. It consists of three high speed, 10-bit video DACs with complementary outputs, a standard TTL input interface, and a high impedance, analog output current source.

The ADV7123-EP has three separate 10-bit-wide input ports. A single 3.3 V power supply and clock are the only components required to make the part functional. The ADV7123-EP has additional video control signals: composite SYNC and BLANK. The ADV7123-EP also has a power save mode.

The ADV7123-EP is fabricated in a 5 V CMOS process. Its monolithic CMOS construction ensures greater functionality with lower power dissipation. The ADV7123-EP is available in a 48-lead LFCSP package.

Full details about this enhanced product are available in the ADV7123 data sheet, which should be consulted in conjunction with this data sheet.

PRODUCT HIGHLIGHTS

- Guaranteed monotonic to 10 bits.
- Compatible with a wide variety of high resolution color graphics systems, including RS-343A and RS-170.

Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No

license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2010-2018 Analog Devices, Inc. All rights reserved. **Technical Support** www.analog.com

ADV7123-EP Enhanced Product

TABLE OF CONTENTS

7/2010—Revision 0: Initial Version

Dynamic Specifications	4
Timing Specifications	5
Absolute Maximum Ratings	
ESD Caution	
Pin Configuration and Function Descriptions	8
Outline Dimensions	10
Ordering Guide	10

SPECIFICATIONS

 $V_{AA} = 3.0 \text{ V}$ to 3.6 V, $V_{REF} = 1.235 \text{ V}$, $R_{SET} = 560 \Omega$, $C_L = 10 \text{ pF}$. All specifications T_{MIN} to T_{MAX} , unless otherwise noted; $T_{JMAX} = 110^{\circ}\text{C}$.

Table 1.

Parameter ²	Min	Тур	Max	Unit	Test Conditions/Comments ¹
STATIC PERFORMANCE					
Resolution (Each DAC)			10	Bits	$R_{SET} = 680 \Omega$
Integral Nonlinearity (BSL)	-1	+0.5	+1	LSB	$R_{SET} = 680 \Omega$
Differential Nonlinearity	-1	+0.25	+1	LSB	$R_{SET} = 680 \Omega$
DIGITAL AND CONTROL INPUTS					
Input High Voltage, V _{IH}	2.0			V	
Input Low Voltage, V _{IL}		0.8		V	
Input Current, I _{IN}	-1		+1	μΑ	$V_{IN} = 0.0 V or V_{DD}$
PSAVE Pull-Up Current		20		μΑ	
Input Capacitance, C _{IN}		10		pF	
ANALOG OUTPUTS					
Output Current	2.0		26.5	mA	Green DAC, SYNC = high
	2.0		18.5	mA	RGB DAC, SYNC = low
DAC-to-DAC Matching		1.0		%	
Output Compliance Range, Voc	0		1.4	V	
Output Impedance, R _{OUT}		70		kΩ	
Output Capacitance, C _{OUT}		10		pF	
Offset Error		0	0	% FSR	Tested with DAC output = 0 V
Gain Error ³		0		% FSR	FSR = 17.62 mA
VOLTAGE REFERENCE, EXTERNAL					
Reference Range, V _{REF}	1.12	1.235	1.35	V	
VOLTAGE REFERENCE, INTERNAL					
Voltage Reference, V _{REF}		1.235		V	
POWER DISSIPATION					
Digital Supply Current⁴		2.2	5.0	mA	$f_{CLK} = 50 \text{ MHz}$
		6.5	12.0	mA	$f_{CLK} = 140 \text{ MHz}$
		7.5	13.5	mA	f _{CLK} = 170 MHz
Analog Supply Current		67	72	mA	$R_{SET} = 560 \Omega$
		8		mA	$R_{SET} = 4933 \Omega$
Standby Supply Current		2.1	5.0	mA	\overline{PSAVE} = low, digital and control inputs at V_{DD}
Power Supply Rejection Ratio		0.1	0.5	%/%	

 $^{^{1}}$ Temperature range T_{MIN} to T_{MAX} : -55°C to $+105^{\circ}\text{C}$.

 $^{^2\}mbox{These}$ maximum/minimum specifications are guaranteed by characterization over the 3.0 V to 3.6 V range.

 $^{^{3}}$ Gain error = {(Measured (FSC)/Ideal (FSC) - 1) \times 100}, where Ideal (FSC) = $V_{REF}/R_{SET} \times K \times (0x3FFH)$ and K = 7.9896.

 $^{^4}$ Digital supply is measured with a continuous clock that has data input corresponding to a ramp pattern and with an input level at 0 V and V_{DD} .

ADV7123-EP Enhanced Product

DYNAMIC SPECIFICATIONS

 $V_{AA} = 3.0 \text{ V to } 3.6 \text{ V}, V_{REF} = 1.235 \text{ V}, R_{SET} = 680 \Omega, C_L = 10 \text{ pF. All specifications are at } T_A = 25 ^{\circ}\text{C}, \text{ unless otherwise noted; } T_{JMAX} = 110 ^{\circ}\text{C}.$

Table 2.

Parameter ¹	Min Typ N	lax Unit
AC LINEARITY		
Spurious-Free Dynamic Range to Nyquist ²		
Single-Ended Output		
$f_{CLK} = 50 \text{ MHz}$; $f_{OUT} = 1.00 \text{ MHz}$	67	dBc
$f_{CLK} = 50 \text{ MHz}$; $f_{OUT} = 2.51 \text{ MHz}$	67	dBc
$f_{CLK} = 50 \text{ MHz}$; $f_{OUT} = 5.04 \text{ MHz}$	63	dBc
$f_{CLK} = 50 \text{ MHz}$; $f_{OUT} = 20.2 \text{ MHz}$	55	dBc
$f_{CLK} = 100 \text{ MHz}$; $f_{OUT} = 2.51 \text{ MHz}$	62	dBc
$f_{CLK} = 100 \text{ MHz}$; $f_{OUT} = 5.04 \text{ MHz}$	60	dBc
$f_{CLK} = 100 \text{ MHz}$; $f_{OUT} = 20.2 \text{ MHz}$	54	dBc
$f_{CLK} = 100 \text{ MHz}$; $f_{OUT} = 40.4 \text{ MHz}$	48	dBc
$f_{CLK} = 140 \text{ MHz}$; $f_{OUT} = 2.51 \text{ MHz}$	57	dBc
$f_{CLK} = 140 \text{ MHz}$; $f_{OUT} = 5.04 \text{ MHz}$	58	dBc
$f_{CLK} = 140 \text{ MHz}$; $f_{OUT} = 20.2 \text{ MHz}$	52	dBc
$f_{CLK} = 140 \text{ MHz}$; $f_{OUT} = 40.4 \text{ MHz}$	41	dBc
Double-Ended Output		
$f_{CLK} = 50 \text{ MHz}; f_{OUT} = 1.00 \text{ MHz}$	70	dBc
$f_{CLK} = 50 \text{ MHz}$; $f_{OUT} = 2.51 \text{ MHz}$	70	dBc
$f_{CLK} = 50 \text{ MHz}$; $f_{OUT} = 5.04 \text{ MHz}$	65	dBc
$f_{CLK} = 50 \text{ MHz}$; $f_{OUT} = 20.2 \text{ MHz}$	54	dBc
$f_{CLK} = 100 \text{ MHz}$; $f_{OUT} = 2.51 \text{ MHz}$	67	dBc
$f_{CLK} = 100 \text{ MHz}$; $f_{OUT} = 5.04 \text{ MHz}$	63	dBc
$f_{CLK} = 100 \text{ MHz}; f_{OUT} = 20.2 \text{ MHz}$	58	dBc
$f_{CLK} = 100 \text{ MHz}$; $f_{OUT} = 40.4 \text{ MHz}$	52	dBc
$f_{CLK} = 140 \text{ MHz}$; $f_{OUT} = 2.51 \text{ MHz}$	62	dBc
$f_{CLK} = 140 \text{ MHz}$; $f_{OUT} = 5.04 \text{ MHz}$	61	dBc
$f_{CLK} = 140 \text{ MHz}$; $f_{OUT} = 20.2 \text{ MHz}$	55	dBc
$f_{CLK} = 140 \text{ MHz}$; $f_{OUT} = 40.4 \text{ MHz}$	53	dBc
Spurious-Free Dynamic Range Within a Window		
Single-Ended Output		
$f_{CLK} = 50 \text{ MHz; } f_{OUT} = 1.00 \text{ MHz; } 1 \text{ MHz Span}$	77	dBc
$f_{CLK} = 50 \text{ MHz}$; $f_{OUT} = 5.04 \text{ MHz}$; 2 MHz Span	73	dBc
$f_{CLK} = 140 \text{ MHz}; f_{OUT} = 5.04 \text{ MHz}; 4 \text{ MHz Span}$	64	dBc
Double-Ended Output		
$f_{CLK} = 50 \text{ MHz}; f_{OUT} = 1.00 \text{ MHz}; 1 \text{ MHz Span}$	74	dBc
$f_{CLK} = 50 \text{ MHz}$; $f_{OUT} = 5.00 \text{ MHz}$; 2 MHz Span	73	dBc
$f_{CLK} = 140 \text{ MHz}$; $f_{OUT} = 5.00 \text{ MHz}$; 4 MHz Span	60	dBc
Total Harmonic Distortion		
$f_{CLK} = 50 \text{ MHz}$; $f_{OUT} = 1.00 \text{ MHz}$		
T _A = 25°C	66	dBc
T _{MIN} to T _{MAX}	65	dBc
$f_{CLK} = 50 \text{ MHz}$; $f_{OUT} = 2.00 \text{ MHz}$	64	dBc
$f_{CLK} = 100 \text{ MHz}; f_{OUT} = 2.00 \text{ MHz}$	64	dBc
$f_{CLK} = 140 \text{ MHz}$; $f_{OUT} = 2.00 \text{ MHz}$	55	dBc

Parameter ¹	Min	Тур	Max	Unit
DAC PERFORMANCE				
Glitch Impulse		10		pV-sec
DAC-to-DAC Crosstalk ³		23		dB
Data Feedthrough ^{4, 5}		22		dB
Clock Feedthrough ^{4, 5}		33		dB

¹ These maximum/minimum specifications are guaranteed by characterization over the 3.0 V to 3.6 V range.

TIMING SPECIFICATIONS

 $V_{AA} = 3.0 \text{ V}$ to 3.6 V, $V_{REF} = 1.235 \text{ V}$, $R_{SET} = 560 \Omega$, $C_L = 10 \text{ pF}$. All specifications T_{MIN} to T_{MAX} , unless otherwise noted; $T_{JMAX} = 110^{\circ} C$.

Table 3.

Parameter ^{2, 3}	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
ANALOG OUTPUTS						
Analog Output Delay	t ₆		7.5		ns	
Analog Output Rise/Fall Time⁴	t ₇		1.0		ns	
Analog Output Transition Time ⁵	t ₈		15		ns	
Analog Output Skew ⁶	t 9		1	2	ns	
CLOCK CONTROL						
CLOCK Frequency ⁷	f _{CLK}			170	MHz	
Data and Control Setup	t ₁	0.68			ns	
Data and Control Hold	t ₂	2.9			ns	
CLOCK Period	t ₃	5.88			ns	
CLOCK Pulse Width High ⁶	t ₄	2.6			ns	f _{CLK_MAX} = 170 MHz
CLOCK Pulse Width Low ⁶	t ₅	2.6			ns	f _{CLK_MAX} = 170 MHz
Pipeline Delay ⁶	t _{PD}	1.0	1.0	1.0	Clock cycles	
PSAVE Up Time ⁶	t ₁₀		4	10	ns	

 $^{^{1}}$ Temperature range T_{MIN} to $T_{\text{MAX}}\!:-55^{\circ}\text{C}$ to $+105^{\circ}\text{C}$.

 $^{^2}$ The ADV7123-EP exhibits high performance when operating with an internal voltage reference, V_{REF} .

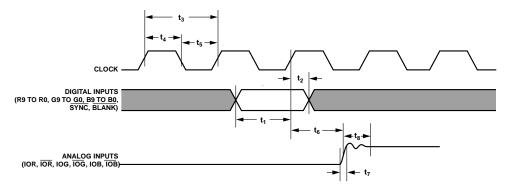
³ DAC-to-DAC crosstalk is measured by holding one DAC high while the other two DACs are making low-to-high and high-to-low transitions.

Clock and data feedthrough is a function of the amount of overshoot and undershoot on the digital inputs. Glitch impulse includes clock and data feedthrough.

⁵ TTL input values are 0 V to 3 V, with input rise/fall times of 3 ns, measured at the 10% and 90% points. Timing reference points are 50% for inputs and outputs.

² These maximum/minimum specifications are guaranteed by characterization over the 3.0 V to 3.6 V range.

 $^{^3}$ Timing specifications are measured with input levels of 3.0 \acute{V} (V $_{IH}$) and 0 V (V $_{IL}$).


A Rise time was measured from the 10% to 90% point of zero to full-scale transition, fall time from the 90% to 10% point of a full-scale transition.

 $^{^{5}}$ Measured from the 50% point of full-scale transition to within 2% of the final output value.

⁶ Guaranteed by characterization.

⁷ f_{CLK} maximum specification production tested at 125 MHz.

ADV7123-EP Enhanced Product

- NOTES

 1. OUTPUT DELAY (16) MEASURED FROM THE 50% POINT OF THE RISING EDGE OF CLOCKTO THE 50% POINT OF FULL-SCALE TRANSITION.

 2. OUTPUT RISE/FALL TIME (17) MEASURED BETWEEN THE 10% AND 90% POINTS OF FULL-SCALE TRANSITION.

 3. TRANSITION TIME (18) MEASURED FROM THE 50% POINT OF FULL-SCALE TRANSITION TO WITHIN 2% OF THE FINAL OUTPUT VALUE.

Figure 2. Timing Diagram

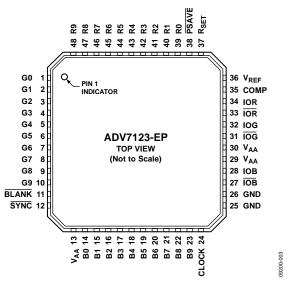
ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
V _{AA} to GND	7 V
Voltage on Any Digital Pin	$GND - 0.5 V to V_{AA} + 0.5 V$
Ambient Operating Temperature (T _A)	−55°C to +105°C
Storage Temperature (Ts)	−65°C to +150°C
Junction Temperature (T _J)	150°C
Lead Temperature (Soldering, 10 sec)	300°C
Vapor Phase Soldering (1 Minute)	220°C
I _{OUT} to GND ¹	0 V to V _{AA}

¹ Analog output short circuit to any power supply or common GND can be of an indefinite duration.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADV7123-EP Enhanced Product

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. THE EXPOSED PADDLE ON THE UNDERSIDE OF THE PACKAGE MUST BE SOLDERED TO THE GROUND PLANE TO INCREASE THE RELIABILITY OF THE SOLDER JOINTS AND TO MAXIMIZE THE THERMAL CAPABILITY OF THE PACKAGE.

Figure 3. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1 to 10,	G0 to G9,	Red, Green, and Blue Pixel Data Inputs (TTL Compatible). Pixel data is latched on the rising edge of CLOCK.
14 to 23, 39 to 48	B0 to B9, R0 to R9	R0, G0, and B0 are the least significant data bits. Unused pixel data inputs should be connected to either the regular printed circuit board (PCB) power or ground plane.
11	BLANK	Composite Blank Control Input (TTL Compatible). A Logic 0 on this control input drives the analog outputs—IOR, IOB, and IOG—to the blanking level. The BLANK signal is latched on the rising edge of CLOCK. When BLANK is a Logic 0, the R0 to R9, G0 to G9, and B0 to B9 pixel inputs are ignored.
12	SYNC	Composite Sync Control Input (TTL Compatible). A Logic 0 on the SYNC input switches off a 40 IRE current source. The sync current is internally connected to the IOG analog output. SYNC does not override any other control or data input; therefore, it should only be asserted during the blanking interval. SYNC is latched on the rising edge of CLOCK. If sync information is not required on the green channel, the SYNC input should be tied to Logic 0.
13, 29, 30	V _{AA}	Analog Power Supply (3.3 V \pm 10%). All V _{AA} pins on the ADV7123-EP must be connected.
24	CLOCK	Clock Input (TTL Compatible). The rising edge of CLOCK latches the R0 to R9, G0 to G9, B0 to B9, SYNC, and BLANK pixel and control inputs. Typically, the CLOCK input is the pixel clock rate of the video system. CLOCK should be driven by a dedicated TTL buffer.
25, 26	GND	Ground. The GND pins must be connected.
27, 31, 33	IOB, IOG, IOR	Differential Red, Green, and Blue Current Outputs (High Impedance Current Sources). These RGB video outputs are specified to directly drive RS-343A and RS-170 video levels into a doubly terminated 75 Ω coaxial cable. If the complementary outputs are not required, these outputs should be tied to ground.
28, 32, 34	IOB, IOG, IOR	Red, Green, and Blue Current Outputs (High Impedance Current Sources). These RGB video outputs are specified to directly drive RS-343A and RS-170 video levels into a doubly terminated 75 Ω coaxial cable. All three current outputs should have similar output loads whether or not they are all being used.
35	COMP	Compensation Pin for the Internal Reference Amplifier. A 0.1 μ F ceramic capacitor must be connected between COMP and V_{AA} .
36	V _{REF}	Voltage Reference Input for DACs or Voltage Reference Output (1.235 V). The V_{REF} pin is normally terminated to V_{AA} through a 0.1 μ F capacitor. However, the ADV7123-EP can be overdriven by an external 1.23 V reference (AD1580), if required.

Pin No.	Mnemonic	Description
37	R _{SET}	A resistor (R_{SET}) connected between this pin and GND controls the magnitude of the full-scale video signal. Note that the IRE relationships are maintained, regardless of the full-scale output current. For nominal video levels into a doubly terminated 75 Ω load, $R_{SET} = 530 \Omega$.
		The relationship between R _{SET} and the full-scale output current on IOG (assuming I _{SYNC} is connected to IOG) is given by
		$R_{SET}(\Omega) = 11,445 \times V_{REF}(V)/IOG \text{ (mA)}$
		The relationship between R _{SET} and the full-scale output current on IOR, IOG, and IOB is given by
		$IOG (mA) = 11,445 \times V_{REF} (V)/R_{SET} (\Omega) (\overline{SYNC} \text{ being asserted})$
		IOR , IOB (mA) = 7989.6 $\times V_{REF}$ (V)/ R_{SET} (Ω)
		The equation for IOG is the same as that for IOR and IOB when SYNC is not being used, that is, SYNC is tied permanently low.
38	PSAVE	Power Save Control Pin. Reduced power consumption is available on the ADV7123-EP when this pin is active.
EP	Exposed Pad	The exposed paddle on the underside of the package must be soldered to the ground plane to increase the reliability of the solder joints and to maximize the thermal capability of the package.

ADV7123-EP Enhanced Product

OUTLINE DIMENSIONS

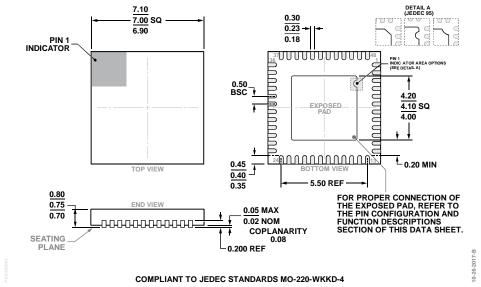


Figure 4. 48-Lead Lead Frame Chip Scale Package [LFCSP] 7 mm × 7 mm Body and 0.75 mm Package Height (CP-48-5) Dimensions shown in millimeters

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Speed Option	Package Description	Package Option
ADV7123SCP170EP-RL	−55°C to +105°C	170 MHz	48-Lead LFCSP	CP-48-5
ADV7123SCP170ZEPRL	−55°C to +105°C	170 MHz	48-Lead LFCSP	CP-48-5

¹ Z = RoHS Compliant Part.

Rev. A | Page 10 of 10

 $^{^{\}rm 2}$ Available in 3.3 V version only.