

GaAs, pHEMT, MMIC, Power Amplifier, 20 GHz to 54 GHz

Preliminary Data Sheet

ADL8106XCEZ

FEATURES

Gain: 21 dB typical

Noise Figure: 3.5 dB typical

Output power for 1 dB compression (P1dB): 12 dB typical

Saturated output power (P_{SAT}): 15 dBm typical Output third-order intercept (IP3): 22 dBm typical

Supply voltage: 3 V at 120 mA 50 Ω matched input/output Package: 5x5mm SMT

APPLICATIONS

Test instrumentation Military and space

GENERAL DESCRIPTION

The ADL8106XCEZ is a gallium arsenide (GaAs), pseudomorphic high electron mobility transfer (pHEMT), monolithic microwave integrated circuit (MMIC), distributed power amplifier that operates from 20 GHz to 54 GHz. The ADL8106XCEZ provides 21 dB of gain, 22 dBm output IP3, and 12 dBm of output power at 1 dB gain compression, while requiring 120 mA from a 3 V supply.

FUNCTIONAL BLOCK DIAGRAM

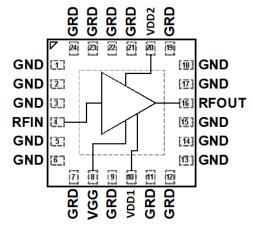


Figure 1.

Preliminary Data Sheet

ADL8106XCEZ

TABLE OF CONTENTS

Features1
Applications1
Functional Block Diagram1
General Description1
Revision History2
Electrical Specifications3
20 GHz to 54 GHz Frequency Range Error! Bookmark not defined.
Absolute Maximum Ratings Error! Bookmark not defined
ESD Caution Error! Bookmark not defined
Pin Configuration and Function Descriptions4

Interface Schematics Error! Bookmark not de	fined.
Typical Performance Characteristics . Error! Bookmandefined.	rk not
Applications Information	8
Mounting and Bonding Techniques for Millimeterwa GaAs MMICs Error! Bookmark not de	
Application Circuit Error! Bookmark not de	fined.
Assembly Diagram Error! Bookmark not de	fined.
Outline Dimensions	9
Ordering Guide	o

REVISION HISTORY

ELECTRICAL SPECIFICATIONS

20 GHz TO 54 GHz FREQUENCY RANGE

 $T_A = 25$ °C, $V_{DD} = 3$ V, $I_{DD} = 120$ mA, unless otherwise stated. Adjust $V_{GG}1$ between -2 V to 0 V to achieve $I_{DD} = 120$ mA typical.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
FREQUENCY RANGE			20		54	GHz
GAIN				21		dB
Gain Variation Over Temperature						dB/°C
RETURN LOSS						
Input				14		dB
Output				14		dB
OUTPUT						
Output Power for 1 dB	P1dB			12		dBm
Compression						
Saturated Output Power	P _{SAT}			15		dBm
Output Third-Order Intercept	IP3	Measurement taken at P _{OUT} /tone = 10 dBm		22		dBm
NOISE FIGURE				3		
TOTAL SUPPLY CURRENT	I _{DD}	V _{DD} = 3 V		120		mA

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

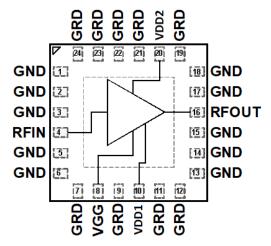


Figure 2. Pin Configuration

Table 2. Pin Function Descriptions

Pad No.	Mnemonic	Description
1, 2, 3, 5, 6, 7, 9, 11, 12, 13,		
14, 15, 17, 18, 19, 21, 22, 23,		Ground. The package bottom has an exposed metal pad that must be connected to
24	GND	RF/dc ground.
4	RFIN	RF Input. This pin is ac-coupled and matched to 50 Ω .
10	V _{DD1} ,	Power Supply Voltage with Integrated RF Choke. Connect dc bias to this pin to provide drain current (I _{DD}).
16	RFOUT	RF Output. This pin is ac-coupled and matched to 50 Ω .
20	V _{DD2} ,	Power Supply Voltage with Integrated RF Choke. Connect dc bias to this pin to provide drain current (I _{DD}).
8	V_{GG}	Gate Control for Amplifier. Attach bypass capacitors as shown in Figure 5. Adjust this pin to achieve $I_{DD} = 120$ mA.
	EPAD	Exposed Pad. The exposed pad must be connected to RF/dc ground.

TYPICAL PERFORMANCE CHARACTERISTICS

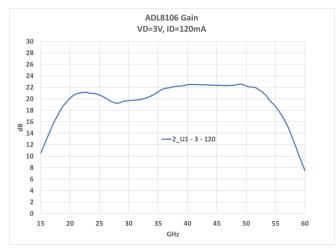


Figure 3. Gain vs. Frequency, Vdd=3V, Idq=120mA

Figure 4. Return Loss vs. Frequency, Vdd=3V, Idq=120mA

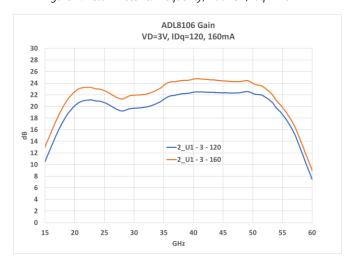


Figure 5. Gain vs. Frequency, Vdd=3V, Idq=120, 160mA

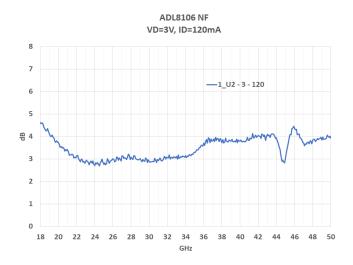


Figure 6. Noise Figure vs. Frequency, Vdd=5V, Idq=120mA

ADL8106 P1dB

VD=3V, 120, 160mA

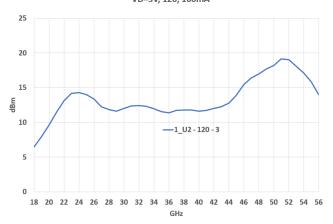


Figure 7. P1dB vs. Frequency, Vdd=3V, Idq=120mA

Figure 8. OIP3 vs. Frequency, Vdd=3V, Idq=120, 160mA

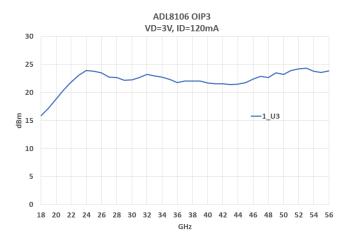


Figure 9. OIP3 vs. Frequency, Vdd=3V, Idq=120mA

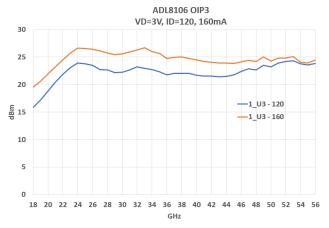
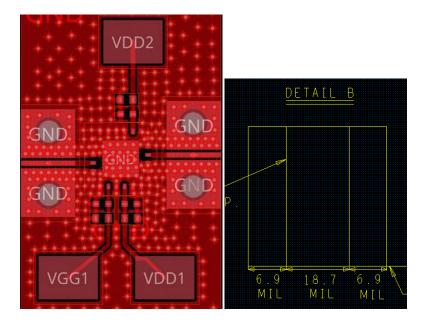
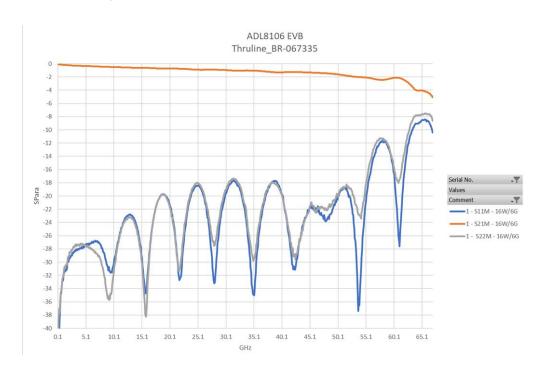



Figure 10. OIP3 vs. Frequency, Vdd=3V, Idq=120, 160mA


EVAL BOARD SCHEMATIC

Eval Board Via layout shown below. Width and Gap of RF trace shown below: 18.7mil trace, 6.9mil gap. The board material is ROGERS RO4003C 12MIL thick.

No external capacitors are required for ADL8106, they are integrated inside of the package. VGG1 is required to control the current of the amplifier (\sim -0.5V roughly). VDD1 and VDD2 are required to power the drain of the amplifier (3V nominal).

Eval Board thru path:

ADL8106XCEZ

APPLICATIONS INFORMATION

The recommended bias sequence during power up is the following:

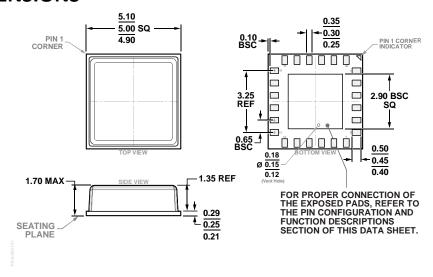
- 1. Connect GND.
- 2. Set V_{GG} to -2 V.
- 3. Set V_{DD1} & V_{DD2} to 3 V.
- 4. Increase V_{GG} to achieve a typical quiescent current (I_{DQ}) = 120 mA.
- 5. Apply the RF signal.

The recommended bias sequence during power down is the following:

- 1. Turn off the RF signal.
- 2. Decrease $V_{GG}1$ to -2 V to achieve $I_{DQ} = 0$ mA.
- 3. Decrease V_{DD} to 0 V.
- 4. Increase V_{GG}1 to 0 V.

XX

Figure 5. Application Circuit



GaAs, pHEMT, MMIC, Power Amplifier, 20 GHz to 54 GHz

Preliminary Data Sheet

ADL8106XCEZ

OUTLINE DIMENSIONS

SOLDERING FOOTPRINT DIMENSIONS (Dimensions shown in millimeters)

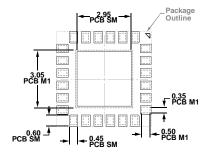


Figure 6. 24-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV] 5.00 x 5.00 mm Body and 1.70 mm Package Height (CE-24-2)

Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADL8106XCEZ	-40°C to +85°C	MSL3	CE-24-2

¹ The ADL8106XCEZ is RoHS Compliant.

Rev. PrA

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781.329.4700©2015–2017 Analog Devices, Inc. All rights reserved.

Technical Support www.analog.com