Evaluation Board for the AD5679R 16-Bit, 16-Channel, Voltage Output DAC

FEATURES

Full featured evaluation board for the AD5679R
Various link options
PC control in conjunction with the Analog Devices, Inc., SDP board

EVALUATION KIT CONTENTS

EVAL-AD5679RSDZ
USB cable

HARDWARE REQUIRED

EVAL-SDP-CB1Z (SDP-B) board, must be purchased separately

SOFTWARE REQUIRED

Analysis | Control | Evaluation software, available for download from the EVAL-AD5679RSDZ product page

GENERAL DESCRIPTION

This user guide details the operation of the EVAL-AD5679RSDZ for the AD5679R 16-bit, 16-channel, voltage output, digital-toanalog converter (DAC).

The EVAL-AD5679RSDZ allows users to quickly prototype AD5679R circuits and reduce design time. The AD5679R
operates from a single 2.7 V to 5.5 V supply range. The AD5679R incorporates an internal 2.5 V reference to give an output voltage of 2.5 V or 5 V . The EVAL-AD5679RSDZ also incorporates additional voltage references.
The EVAL-AD5679RSDZ interfaces to the USB port of a PC via a system demonstration platform (SDP-B) board. The Analysis | Control | Evaluation (ACE) software is available for download from the EVAL-AD5679RSDZ product page to use with the evaluation board to allow the user to program the AD5679R. A peripheral module interface (PMOD) connection is also available to allow the connection of microcontrollers to the evaluation board without the SDP-B board. When a microcontroller is used through the PMOD connection, the SDP-B board must be disconnected, and the user is unable to operate the ACE software.
The EVAL-AD5679RSDZ is compatible with any Analog Devices, Inc., SDP-B board, which can be purchased separately. A typical connection between the EVAL-AD5679RSDZ and the SDP-B controller board is shown in Figure 1.

For full details, see the AD5679R data sheet, which must be used in conjunction with this user guide when using the EVALAD5679RSDZ.

EVALUATION BOARD PHOTOGRAPH

Figure 1.EVAL-AD5679RSDZ

TABLE OF CONTENTS

Features 1
Evaluation Kit Contents 1
Hardware Required 1
Software Required 1
General Description 1
Evaluation Board Photograph 1
Revision History 2
Evaluation Board Software Quick Start Procedures 3
Installing the Software 3
Initial Setup 3

REVISION HISTORY

8/2019—Revision 0: Initial Version
Functional Block Diagram and Description 4
Memory Map 5
Evaluation Board Hardware 6
Power Supplies 6
Link Options 6
On-Board Connectors 6
Evaluation Board Schematics and Artwork 7
Ordering Information 12
Bill of Materials 12

EVALUATION BOARD SOFTWARE QUICK START PROCEDURES

INSTALLING THE SOFTWARE

The EVAL-AD5679RSDZ uses the ACE evaluation software, which allows the evaluation and control of multiple evaluation systems.

The ACE installer installs the necessary SDP-B drivers and the Microsoft ${ }^{\bullet}$. NET Framework 4 by default. The ACE software is available for download from the EVAL-AD5679RSDZ product page and must be installed before connecting the SDP-B board to the USB port of the PC to ensure that the SDP-B board is recognized connected to the PC. For full instructions on how to install and use this software, see the ACE software page on the Analog Devices website.
After the installation is finished, the EVAL-AD5679RSDZ plugin appears when the ACE software is opened.

INITIAL SETUP

To set up the evaluation board, take the following steps:

1. Connect the evaluation board to the SDP-B board, and then connect the USB cable between the SDP-B board and the PC.
2. Run the ACE application. The EVAL-AD5679RSDZ plugins appear in the attached hardware section of the Start tab.
3. Double-click the board plug-in to open the board view seen in Figure 2.
4. Double-click the AD5679R chip to access the chip block diagram. This view provides a basic representation of the functionality of the board. The main functions of the board are labeled in Figure 3.

Figure 2. Board View of the EVAL-AD5679RSDZ

Figure 3. Chip Block Diagram of the AD5679R

UG-1463

FUNCTIONAL BLOCK DIAGRAM AND DESCRIPTION

The EVAL-AD5679RSDZ software is organized to appear similarly to the functional block diagram shown in the AD5679R data sheet, which simplifies correlating the functions on the EVAL-AD5679RSDZ with the description in the AD5679R data sheet.

For a full description of each block, register, and its settings, see the AD5679R data sheet.

Some of the blocks and their functions are described in this section as they pertain to the evaluation board. The full screen block diagram is shown in Figure 4. Table 1 describes the functionality of each block.

Figure 4. AD5679R Block Diagram with Labels
Table 1. Block Diagram Functions (See Figure 4)

Label	Button/Function Name	Function
A	CONFIGURATION wizard	Used to set the initial configuration for the board. Select the reference gain case from the Output Gain dropdown menu. A gain of 1 is the default. After setting up the initial configuration, click Apply to apply the values. These settings can be modified at any stage while evaluating the board.
B	LDAC and RESET (GPIO buttons)	Act as external GPIO pulses to the $\overline{\text { LDAC pin and } \overline{\text { RESET pin. The LDAC button pushes data from both }}}$input registers (Label D) to the DAC registers (Label E). The RESET button clears all data from input registers and DAC registers. These buttons are live and there is no need to click Apply Changes (Label J). C Select a Command D Command option dropdown menu selects how the data being transferred to the device affects the input registers and DAC registers. After a data value is entered in an input register (Label D), this menu determines if the data is transferred to the input register only, or to the channel input register (Label D) and the channel DAC register (Label E). E Register 3
DAC Register 0 through DAC Register 3	Displays the value that is currently present in the DAC register on the device. Update the DAC registers by selecting the appropriate command option or by toggling LDAC (Label B).	
F	Software RESET	Returns the evaluation board and software to default values. This button is live. Therefore, there is no need to click Apply Changes.
G	Load DAC word to the device.	

MEMORY MAP

All registers are fully accessible from the AD5679R Memory Map tab, shown in Figure 5. This tab allows registers to be edited at bit level. The bits shaded in dark gray are read-only bits and cannot be accessed from the ACE software. All other bits are toggled.

Clicking the Apply Changes button transfers data to the device. All changes made in the memory map tab correspond to the block diagram. For example, if the internal register bit is enabled, it displays as enabled on the block diagram. Any bits or registers that are shown in bold in the memory map tab are modified values that have not been transferred to the evaluation board (see Figure 6). Click Apply Changes to transfer the data to the evaluation board.

Figure 6. AD5679R Memory Map with Unapplied Changes in the DACO_Input Register

EVALUATION BOARD HARDWARE POWER SUPPLIES

The EVAL-AD5679RSDZ provides on-board 3.3 V and 5 V regulators powered through the USB supply or from an external source. If a different supply is required or if the evaluation board is controlled through the PMOD connector, an external supply must be provided by the external supply voltage (EXTSUP) connector. See Table 2 for more details.

Every supply is decoupled to ground with $10 \mu \mathrm{~F}$ tantalum and $0.1 \mu \mathrm{~F}$ ceramic capacitors.

LINK OPTIONS

A number of link options are incorporated on the EVALAD5679RSDZ and must be set for the required operating conditions before using the board. The functions of these link options are described in Table 3.

Table 2. Power Supply Connectors

Connector Label	External Voltage Supplies Description
EXTSUP, Pin 1	External analog power supply from 2.7 V to 5.5 V.
EXTSUP, Pin 2	Analog ground.
VREF_CONN	External voltage reference.

Table 3. Link Functions

Link	Description
LK1	This link selects the primary analog voltage source for the 3.3 V output and 5 V output for LK2. There are two options, as follows: The USB option selects the USB supply from Pin 5 of the 120-pin connector of the SDP-B board. The EXT option selects an EXTSUP connector. Voltage applied to EXTSUP must be between 2.7 V to 5.5 V.
LK2	This link selects the DAC analog voltage source. There are three options, as follows: The 5 V 0 option selects the on-board 5 V source from the LTC 3536. The 3 V 3 option selects the on-board 3.3 V source from the ADM7160. The EXT option selects an EXTSUP connector. Voltage applied to EXTSUP must be between 2.7 V to 5.5 V.
LK3	This link selects the gain setting for the DAC. There are three options, as follows: The gain option allows the ACE plugin to control the gain setting of the device. The high option selects gain $=2$. The low option selects gain $=1$.

ON-BOARD CONNECTORS

Table 4 shows the connectors on EVAL-AD5679RSDZ.
Table 4. On-Board Connectors

Connector	Function
EXTSUP	External analog power supply from 2.7 V to 5.5 V.
VREF_CONN	External voltage reference.
P2	DAC outputs from Vout0 to Vout7.
P3	DAC outputs from Vout8 to Vout15.

EVALUATION BOARD SCHEMATICS AND ARTWORK

Figure 7. EVAL-AD5679RSDZ Schematic, SDP, Arduino ${ }^{\ominus}$-Compatible, PMOD Connectors

Figure 8. EVAL-AD5679RSDZ Schematic, Main Circuit Rev. $0 \mid$ Page 8 of 13

Figure 9. EVAL-AD5679RSDZ Schematic, Output Connectors

Figure 10. EVAL-AD5679RSDZ Top Side Component Placement

Figure 11. EVAL-AD5679RSDZ Top Side Routing

Figure 12. EVAL-AD5679RSDZ Bottom Side Component Placement

Figure 13. EVAL-AD5679RSDZ Bottom Side Routing

UG-1463

ORDERING INFORMATION

BILL OF MATERIALS

Table 5.

Qty	Reference Designator	Description	Supplier/Part Number ${ }^{1,2}$
4	C1, C6, C18, C25	Ceramic capacitors, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}, 0402$	GRM155R71C104KA88D
2	C11, C12	Ceramic capacitors, $4.7 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}, 0805$	C2012X7R1A475M085AC
2	C2, C4	Ceramic capacitors, $10 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 0603$	GRM188R61A106KE69D
1	C21	Ceramic capacitor, $68 \mathrm{pF}, 50 \mathrm{~V}, \mathrm{NPO}, 0402$	GCM1555C1H680JA16D
1	C22	Ceramic capacitor, $15 \mathrm{pF}, 50 \mathrm{~V}, \mathrm{COG}, 0402$	CGA2B2C0G1H150J050BA
1	C23	Ceramic capacitor, $22 \mu \mathrm{~F}, 25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 1206$	CL31A226KAHNNNE
1	C3	Tantalum capacitor, $10 \mu \mathrm{~F}, 16 \mathrm{~V}, 1411$	TAJB106K016RNJ
2	C8, C33	Ceramic capacitors, $1 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}, 0603$	CL10B105KP8NNNC
1	C5	Ceramic capacitor, $10 \mu \mathrm{~F}, 25 \mathrm{~V}$, X5R, 0805	GRM21BR61E106KA73L
1	EXTSUP	Terminal block, 5.08 mm pitch	OSTTC022162
1	L1	Inductor, $4.7 \mu \mathrm{H}, 5 \mathrm{~A}, 57.4 \mathrm{~m} \Omega$ direct current resistance (DCR)	XFL4020-472MEB
1	LK1	3-pin male header, 2.54 mm pitch	M20-9990345
2	LK2, LK3	6-pin male headers, 2.54 mm pitch	TSW-103-08-G-D
2	P2, P3	16-pin male headers, 2.54 mm pitch	67996-416HLF
1	R13	Resistor, SMD, 0 , 1\%, 1/10 W, 0603, thick film	CRCW0603000ZRT1
8	R4, R8, R14, R16, R41, R42, R43, R44	Resistors, SMD, $0 \Omega, 1 / 16 \mathrm{~W}, 0603$, thick film	MC0603WG00000T5E-TC
2	R2, R3	Resistors, SMD, $100 \mathrm{k} \Omega, 5 \%, 1 / 10 \mathrm{~W}, 0603$, thick film	RC0603JR-07100KL
1	R35	Resistor, SMD, $100 \mathrm{k} \Omega, 1 \%, 1 / 5 \mathrm{~W}, 0402$, thick film	ERJ-PA2F1003X
2	R36, R47	Resistors, SMD, $150 \mathrm{k} \Omega, 1 \%, 1 / 10 \mathrm{~W}, 0402$, thick film	ERJ-2RKF1503X
1	R40	Resistor, SMD, $0 \Omega, 1 / 10 \mathrm{~W}, 0805$, thick film	MC 0.1W 0805 OR
1	R45	Resistor, SMD, $21.5 \mathrm{k} \Omega, 1 \%, 1 / 10 \mathrm{~W}, 0402$, thick film	ERJ-2RKF2152X
1	R46	Resistor, SMD, 1.1 M 2 , 1\%, 1/16 W, 0402, thick film	AC0402FR-071M1L
1	SDP	SDP connector	FX8-120S-SV(21)
1	TP1	Test point, black	20-2137
1	TP2	Test point, red	20-313137
1	VREF_CONN	SubMiniature version B (SMB) connector	1-1337482-0
1	U1	$32 \mathrm{k} \Omega, \mathrm{I}^{2} \mathrm{C}$ electronically erasable programmable read-only memory (EEPROM)	24LC32A-I/ST
1	U2	1 A low noise, buck-boost dc-to-dc converter	LTC3536EDD\#PBF
1	U3	16-Channel, 16-Bit, nanoDAC+	AD5679RBCPZ-1
1	U4	Ultralow noise, 200 mA linear regulator	ADM7160ACPZN3.3-R7

[^0]
NOTES

$1^{2} C$ refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

[^1]
Legal Terms and Conditions

 submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.
©2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. UG17275-0-8/19(0)

[^0]: ${ }^{1}$ FEC refers to Farnell Electronic Component Distributors.
 ${ }^{2}$ Generic indicates that any device with the specified value, size, and rating can be used.

[^1]: ESD Caution
 ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

