

NOT RECOMMENDED NMA 24V & 48V Series

FOR NEW DESIGNS Isolated 1W Dual Output DC/DC Converters

FEATURES

- RoHS compliant
- Efficiency up to 80%
- Power density up to 0.85W/cm³
- Dual output from a single input rail
- UL 94V-0 package material
- No heatsink required
- Footprint from 1.17cm²
- Industry standard pinout
- Power sharing on output
- 1kVDC isolation
- 24V & 48V input
- 5V, 9V, 12V and 15V output
- Internal SMD construction
- Fully encapsulated with toroidal magnetics
- No external components required

DESCRIPTION

The NMA series of DC/DC converters are the standard buliding blocks for on-board distributed power systems. They are ideally suited for providing dual rail supplies on primarily digital boards with the added benefit of galvanic isolation to reduce switching noise. All of the rated power may be drawn from a single pin provided the total load does not exceed 1 watt.

SELECTION (UIDE							
Order Code	Nominal Input Voltage	Output Voltage	Output Current	Efficiency	Isolation Capacitance	MTTF ¹	Package Style	Recommended Alternatives (click for
	V	V	mA	%	pF	kHrs		data sheet)
			Not recomn	nended for n	ew designs:			
NMA2405SC	24	±5	±100	70	39	194		MEA1D2405SC
NMA2409SC	24	±9	±55	77	85	129	CID	MEA1D2409SC
NMA2412SC	24	±12	±42	80	65	134	SIP	MEA1D2412SC
NMA2415SC	24	±15	±33	80	95	101		MEA1D2415SC
				Obsolete:				
NMA2405DC	24	±5	±100	70	39	194		MEA1D2405DC
NMA2409DC	24	±9	±55	77	85	129		MEA1D2409DC
NMA2412DC	24	±12	±42	80	65	134		MEA1D2412DC
NMA2415DC	24	±15	±33	80	95	101	DIP	MEA1D2415DC
NMA4805DC	48	±5	±100	70	26	206		MEA1D4805DC
NWA4809DC	48	±9	±55	80	38	174		MEA1D4809DC
NMA4812DC	48	±12	±42	80	52	139		MEA1D4812DC
NMA4815DC	48	±15	±33	80	56	104		MEA1D4815DC
NMA4805SC	48	±5	±100	70	26	206		MEA1D4805SC
NMA4809SC	48	±9	±55	80	38	174	CID	MEA1D4809SC
NMA4812SC	48	±12	±42	80	52	139	SIP	MEA1D4812SC
NMA4815SC	48	±15	±33	80	56	104		MEA1D4815SC

When operated **with** additional external load capacitance the rise time of the input voltage will determine the maximum external capacitance value for guaranteed start up. The slower the rise time of the input voltage the greater the maximum value of the additional external capacitance for reliable start up.

INPUT CHARACTERISTICS							
Parameter	Conditions	Min.	Тур.	Max.	Units		
Voltage range	Continuous operation, 24V input types	21.6	24	26.4	V		
	Continuous operation, 48V input types	43.2	48	52.8	V		

OUTPUT CHARACTERISTICS							
Parameter	Conditions	Min.	Тур.	Max.	Units		
Rated Power ²	T _A =0°C to 70°C			1	W		
Voltage Set Point Accuracy	See tolerance envelope						
Line regulation	High V _{IN} to low V _{IN}			1.2	%/%		
Lead Demilation	10% load to rated load, 5V output types			15	%		
Load Regulation	10% load to rated load, all other output types			10	70		
Ripple and Noise	BW=DC to 20MHz, all input types			150	mV p-p		

ABSOLUTE MAXIMUM RATINGS					
Lead temperature 1.5mm from case for 10 seconds	300°C				
Internal power dissipation	450mW				
Input voltage V _{IN} , NMA24 types	28V				
Input voltage V _{IN} , NMA48 types	54V				

- 1. Calculated using MIL-HDBK-217F with nominal input voltage at full load.
- 2. See derating graph.

All specifications typical at $T_A=25\,^{\circ}\text{C}$, nominal input voltage and rated output current unless otherwise specified.

www.murata-ps.com/support

NMA 24V & 48V Series

Isolated 1W Dual Output DC/DC Converters

ISOLATION CHARACTERISTICS							
Parameter	Conditions	Min.	Тур.	Max.	Units		
Isolation test voltage	Flash tested for 1 second	1000			VDC		
Resistance	Viso= 500VDC	10			GΩ		

GENERAL CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Switching frequency	All input types		100		kHz

TEMPERATURE CHARACTERISTICS						
Parameter	Conditions	N	/lin.	Тур.	Max.	Units
Specification	All output types		0		70	°C
Storage			-55		150	
Cooling	Free air convection					

ROHS COMPLIANCE INFORMATION

This series is compatible with RoHS soldering systems with a peak wave solder temperature of 300°C for 10 seconds. The pin termination finish on the SIP package type is Tin Plate, Hot Dipped over Matte Tin with Nickel Preplate. The DIP types are Matte Tin over Nickel Preplate. Both types in this series are backward compatible with Sn/Pb soldering systems.

For further information, please visit www.murata-ps.com/rohs

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions NMA series of DC/DC converters are all 100% production tested at their stated isolation voltage. This is 1kVDC for 1 second.

A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

For a part holding no specific agency approvals, such as the NMA series, both input and output should normally be maintained within SELV limits i.e. less than 42.4V peak, or 60VDC. The isolation test voltage represents a measure of immunity to transient voltages and the part should never be used as an element of a safety isolation system. The part could be expected to function correctly with several hundred volts offset applied continuously across the isolation barrier; but then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage and further isolation/insulation systems must form a barrier between these circuits and any user-accessible circuitry according to safety standard requirements.

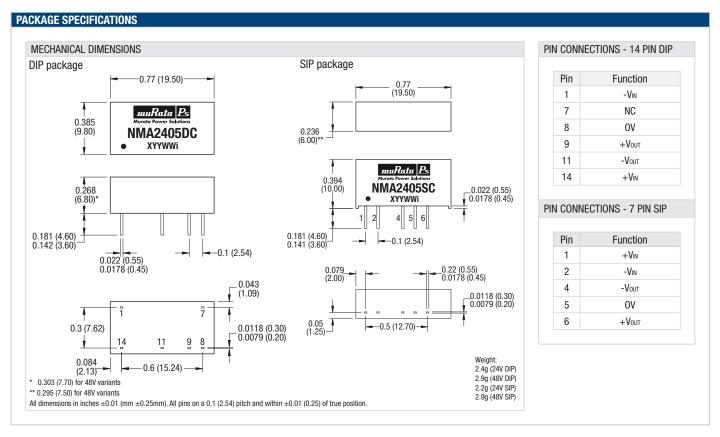
REPEATED HIGH-VOLTAGE ISOLATION TESTING

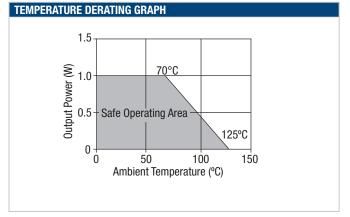
It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. The NMA series has toroidal isolation transformers, with no additional insulation between primary and secondary windings of enameled wire. While parts can be expected to withstand several times the stated test voltage, the isolation capability does depend on the wire insulation. Any material, including this enamel (typically polyurethane) is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

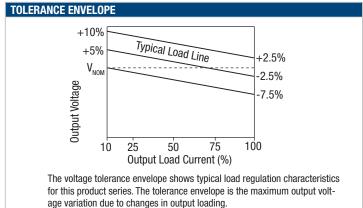
This consideration equally applies to agency recognized parts rated for better than functional isolation where the wire enamel insulation is always supplemented by a further insulation system of physical spacing or barriers.

APPLICATION NOTES

Minimum load

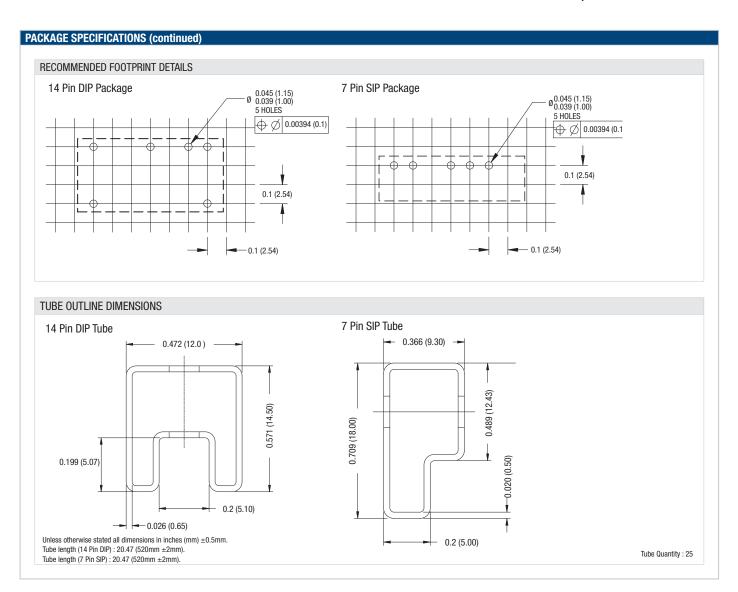

The minimum load to meet datasheet specification is 10% of the full rated load across the specified input voltage range. Lower than 10% minimum loading will result in an increase in output voltage, which may rise to typically double the specified output voltage if the output load falls to less than 5%.


www.murata-ps.com/support



NMA 24V & 48V Series

Isolated 1W Dual Output DC/DC Converters



NMA 24V & 48V Series

Isolated 1W Dual Output DC/DC Converters

Murata Power Solutions, Inc.
11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A.
ISO 9001 and 14001 REGISTERED

This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>:

Refer to: http://www.murata-ps.com/requirements/

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not mixely the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

© 2011 Murata Power Solutions, Inc.

www.murata-ps.com/support

KDC_NMAC2.G02 Page 4 of 4