

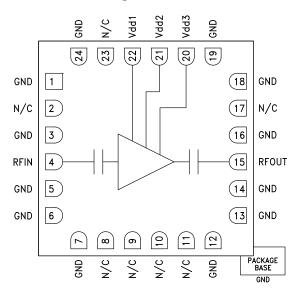
SMT PHEMT LOW NOISE AMPLIFIER, 17 - 27 GHz

Typical Applications

The HMC751LC4 is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios & VSAT
- Test Equipment and Sensors
- Military

Features


Noise Figure: 2.2 dB

Gain: 25 dB OIP3: +25 dBm

Single Supply: +4V @ 73 mA 50 Ohm Matched Input/Output

RoHS Compliant 4 x 4 mm Package

Functional Diagram

General Description

The HMC751LC4 is a high dynamic range GaAs pHEMT MMIC Low Noise Amplifier (LNA) housed in a leadless "Pb free" RoHS compliant SMT package. The HMC751LC4 provides 25 dB of small signal gain, 2.2 dB of noise figure and output IP3 of +25 dBm. The P1dB output power of +13 dBm also enables the LNA to function as a LO driver for balanced, I/Q or image reject mixers. The HMC751LC4 allows the use of surface mount manufacturing techniques.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd 1, 2, 3 = +4V

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		17 - 20		20 - 27			GHz
Gain	22	24		23	25		dB
Gain Variation Over Temperature		0.025			0.028		dB/ °C
Noise Figure		2.2	2.8		2.0	2.6	dB
Input Return Loss		17			15		dB
Output Return Loss		16			15		dB
Output Power for 1 dB Compression (P1dB)		13			13		dBm
Saturated Output Power (Psat)		15			15		dBm
Output Third Order Intercept (IP3)		25			25		dBm
Supply Current (Idd)(Vdd = +4V)	50	73	90	50	73	90	mA

HMC751* PRODUCT PAGE QUICK LINKS

Last Content Update: 12/18/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

EVALUATION KITS

• Evaluation board for the HMC751.

DOCUMENTATION

Application Notes

- AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers
- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

Data Sheet

• HMC751 Data Sheet

TOOLS AND SIMULATIONS •

• HMC751 S-Parameter

REFERENCE MATERIALS 🖵

Product Selection Guide

 RF, Microwave, and Millimeter Wave IC Selection Guide 2017

Quality Documentation

- Package/Assembly Qualification Test Report: LC4, LC4B (QTR: 2014-00380 REV: 01)
- Semiconductor Qualification Test Report: PHEMT-F (QTR: 2013-00269)

DESIGN RESOURCES 🖵

- · HMC751 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC751 EngineerZone Discussions.

SAMPLE AND BUY 🖳

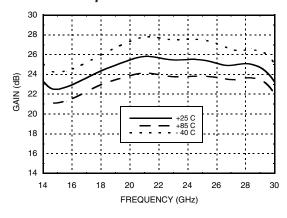
Visit the product page to see pricing options.

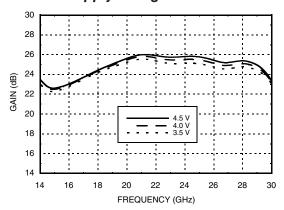
TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

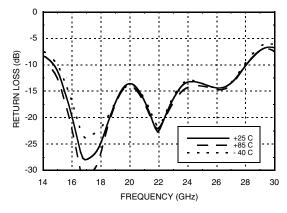
DOCUMENT FEEDBACK 🖳

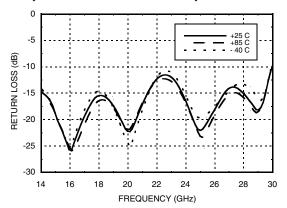
Submit feedback for this data sheet.

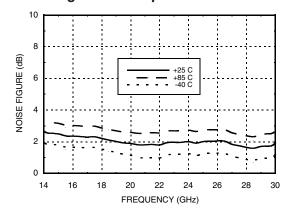

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

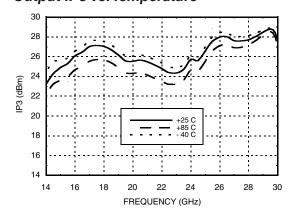


SMT PHEMT LOW NOISE AMPLIFIER, 17 - 27 GHz


Gain vs. Temperature

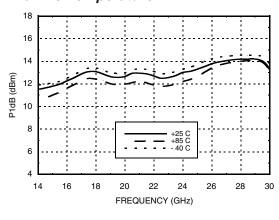

Gain vs. Supply Voltage

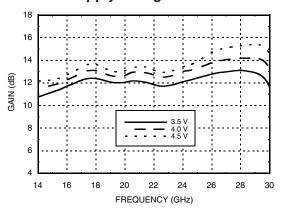

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

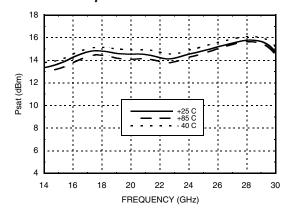
Noise Figure vs. Temperature

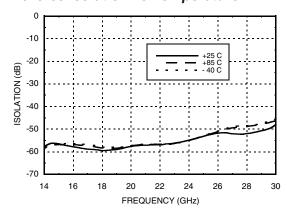
Output IP3 vs. Temperature

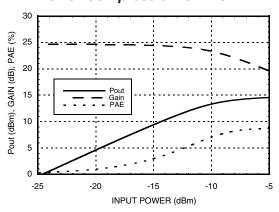




SMT PHEMT LOW NOISE AMPLIFIER, 17 - 27 GHz


P1dB vs. Temperature


P1dB vs. Supply Voltage


Psat vs. Temperature

Reverse Isolation vs. Temperature

Power Compression @ 21 GHz

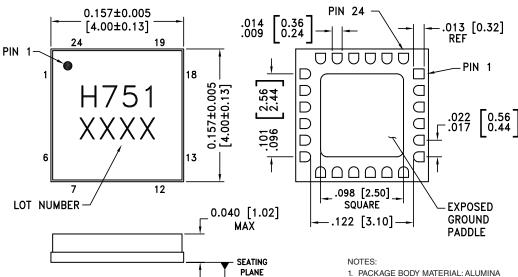
SMT PHEMT LOW NOISE AMPLIFIER, 17 - 27 GHz

Absolute Maximum Ratings

Drain Bias Voltage (Vdd1, Vdd2, Vdd3)	+5.5 Vdc
RF Input Power (RFIN)(Vdd = +4 Vdc)	-5 dBm
Channel Temperature	175 °C
Continuous Pdiss (T= 85 °C) (derate 11.2 mW/°C above 85 °C)	1 W
Thermal Resistance (channel to ground paddle)	89 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Typical Supply Current vs. Vdd

Vdd (Vdc)	ldd (mA)
+3.5	69
+4.0	73
+4.5	77


Note: Amplifier will operate over full voltage range shown above.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

BOTTOM VIEW

-C-

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING: 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND

Package Information

Part Numb	·	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC751LC		Alumina, White	Gold over Nickel	MSL3 ^[1]	H751 XXXX

^[1] Max peak reflow temperature of 260 °C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

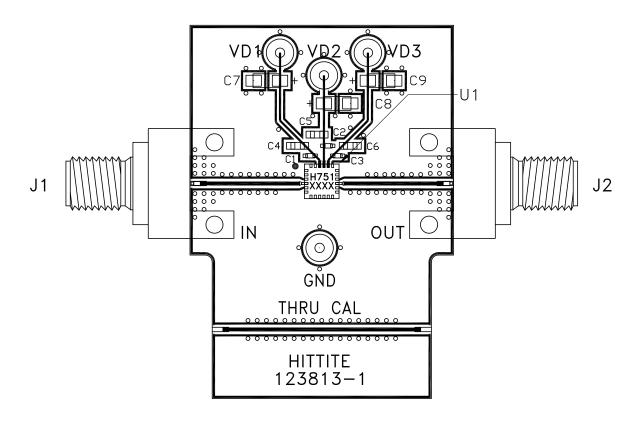
^{[2] 4-}Digit lot number XXXX

SMT PHEMT LOW NOISE AMPLIFIER, 17 - 27 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3, 5 - 7, 12 - 14, 16, 18, 19, 24	GND	These pins and package bottom must be connected to RF/DC ground.	GND =
2, 8 - 11, 17, 23	N/C	This pin may be connected to RF/DC ground. Performance will not be affected.	
4	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN ○──
15	RFOUT	This pin is AC coupled and matched to 50 Ohms.	— —○ RFOUT
22, 21, 20	Vdd1, 2, 3	Power Supply Voltage for the amplifier. External bypass capacitors of 100 pF, 1,000 pF and 2.2 μF are required.	OVdd1,2,3

Application Circuit


Component Value		
C1, C2, C3 100 pF	VIII VIII	V 1.7
C4, C5, C6 1,000 pF	Vdd1 Vdd2 ♀ ♀	Vdd3 ♀
C7, C8, C9 2.2 μF		
RFIN ○——	24 23 22 21 1 2 3 4 5 6 6 7 8 9 10	20 19 18 17 16

SMT PHEMT LOW NOISE AMPLIFIER, 17 - 27 GHz

Evaluation PCB

List of Materials for Evaluation PCB 123815 [1]

Item	Description
J1 - J2	PCB Mount K Connector
J3 - J6	DC Pin
C1 - C3	100 pF Capacitor, 0402 Pkg.
C4 - C6	1,000 pF Capacitor, 0603 Pkg.
C7 - C9	2.2 µF Capacitor, Tantalum
U1	HMC751LC4 Amplifier
PCB [2]	123813 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350 or Arlon 25FR