GENERAL DESCRIPTION

KYOCERA AVX has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 25 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.
KYOCERA AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers.

HOW TO ORDER

0805	5	A	104	K	4	T	2	A
Size	Voltage	Dielectric	Capacitance	Capacitance	Failure	Terminations	Packaging	Special Code
0402	$6.3 \mathrm{~V}=6$	NP0 = A	Code (In pF)	Tolerance	Rate	T=PlatedNi and Sn	$2=7$ " Reel	A = Std. Product
0603	$10 \mathrm{~V}=\mathrm{Z}$	X7R = C	2 Sig. Digits +	$\mathrm{B}= \pm 0.1 \mathrm{pF}(<10 \mathrm{pF})^{*}$	4=Automotive	Z=FLEXITERM ${ }^{\text {®** }}$	$4=13$ " Reel	
0805	$16 \mathrm{~V}=\mathrm{Y}$	$\mathrm{X} 8 \mathrm{R}=\mathrm{F}$	Number of Zeros	$\mathrm{C}= \pm 0.25 \mathrm{pF}(<10 \mathrm{pF}){ }^{*}$	4=Automotive	U = Conductive Epo		
1210	$25 \mathrm{~V}=3$		e.g. $10 \mathrm{~F}=106$	$\mathrm{D}= \pm 0.5 \mathrm{pF}(<10 \mathrm{pF}) *$				
1812	$35 \mathrm{~V}=\mathrm{D}$			$\mathrm{F}= \pm 1 \%^{*}$		**X7R X8Ronly		
	$50 \mathrm{~V}=5$			$\mathrm{G}= \pm 2 \%$ *				
	$100 \mathrm{~V}=1$			$J= \pm 5 \%$ (< $=1 \mu \mathrm{~F})$	Contact factory	for availability of Tole	ance Options for	Specific Part Numbers.
	$200 \mathrm{~V}=2$			$\mathrm{K}= \pm 10 \%$	Contactactory	foriluy of		Speific Par Numbers.
	$500 \mathrm{~V}=7$			$\mathrm{M}= \pm 20 \%$	NOTE: Contac	factory for non-spec ase size available in T	fied capacitance termination only.	
				*NPO only				

COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON

	Commercial	Automotive
Administrative	Standard Part Numbers. No restriction on who purchases these parts.	Specific Automotive Part Number. sed to control supply of product to Automotive customers.
Lot Qualification (Destructive Physical Analysis - DPA)	As per EIA RS469	Increased sample plan stricter criteria.
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing.

[^0]
Automotive MLCC

FLEXITERM FEATURES

a) Bend Test

The capacitor is soldered to the PC Board as shown:

Typical bend test results are shown below:

Style	Conventional	Soft Term
0603	$>2 m m$	>5
0805	$>2 m m$	>5
1206	$>2 m m$	>5

a) Temperature Cycle testing

FLEXITERM ${ }^{\circledR}$ has the ability to withstand at least 1000 cycles between $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$

Automotive MLCC-NPO

Capacitance Range

Case Size		0402			0603					0805							1206								1210						
Length (L)	$\begin{aligned} & \text { (in.) } \end{aligned}$	$\begin{gathered} 1.00 \pm 0.10 \\ (0.040 \pm 0.004) \\ \hline \end{gathered}$			$\begin{gathered} 1.60 \pm 0.15 \\ (0.063 \pm 0.006) \end{gathered}$					$\begin{gathered} 2.01 \pm 0.20 \\ 0.079 \pm 0.008 \\ \hline \end{gathered}$							$\begin{gathered} 3.20 \pm 0.20 \\ (0.126 \pm 0.008) \\ \hline \end{gathered}$								$\begin{gathered} 3.20 \pm 0.20 \\ (0.126 \pm 0.008) \end{gathered}$						
Width (W)	$\begin{aligned} & \mathrm{mm} \\ & (\mathrm{in} .) \\ & \hline \end{aligned}$	$\begin{gathered} 0.50 \pm 0.10 \\ (0.020 \pm 0.004) \\ \hline \end{gathered}$			$\begin{gathered} 0.81 \pm 0.15 \\ (0.032 \pm 0.006) \\ \hline \end{gathered}$					$\begin{gathered} 1.25 \pm 0.20 \\ (0.049 \pm 0.008) \\ \hline \end{gathered}$							$\begin{gathered} 1.60 \pm 0.20 \\ (0.063 \pm 0.008) \\ \hline \end{gathered}$								$\begin{gathered} 2.50 \pm 0.20 \\ (0.098 \pm 0.008) \end{gathered}$						
Terminal (t)	$\mathrm{m}_{\text {(in.) }}$	$\begin{gathered} 0.25 \pm 0.15 \\ (0.010 \pm 0.006) \\ \hline \end{gathered}$			$\begin{gathered} 0.35 \pm 0.15 \\ (0.014 \pm 0.006) \\ \hline \end{gathered}$					$\begin{gathered} 0.50 \pm 0.25 \\ (0.020 \pm 0.010) \\ \hline \end{gathered}$							$\begin{gathered} 0.50 \pm 0.25 \\ (0.020 \pm 0.010) \\ \hline \end{gathered}$								$\begin{gathered} 0.50 \pm 0.25 \\ (0.020 \pm 0.010) \\ \hline \end{gathered}$						
CAP	$\begin{aligned} & \text { CAP } \\ & \text { Code } \end{aligned}$	25	50	100	25	50	100	200	250	25	50	100	200	250	500	630	25	50	100	200	250	500	630	1000	50	100	200	250	500	630	1000
0.5	0R5	C	c	c	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
1	1R0	C	c	c	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
5	5R0	c	c	c	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
10	100	c	c	c	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
12	120	c	c	c	G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
15	150	c	c	c	G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
18	180	c	c	c	G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
22	220	c	c	c	G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
27	270	c	c	c	G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
33	330	c	c	c	G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
39	390	c	c	c	G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
47	470	c	C		G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	1	Q	Q	J	J	J	J	J	J	J
56	560	C	C		G	G	G	G		J	J	J	J	N			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
68	680	c	C		G	G	G	G		J	J	J	J	N			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
82	820	c	C		G	G	G	G		J	J	J	J	N			J	J	J	J	J	J	Q	Q	N	N	N	N	N	N	N
100	101	c	c		G	G	G	G		J	J	J	J	N			J	J	J	J	J	J	Q	Q	N	N	N	N	N	N	N
120	121				G	G	G			J	J	J	J	N			J	J	J	J	J	J	Q	Q	N	N	N	P	P	P	X
150	151				G	G	G			J	J	J	J	N			J	J	J	J	J	J	Q	Q	N	N	N	P	P	P	x
180	181				G	G	G			J	J	J	J	N			J	J	J	J	J	J	Q	Q	N	N	N	P	P	P	x
220	221				G	G	G			J	J	J	J	N			J	J	J	J	J	J	Q	Q	N	N	N	P	P	P	X
270	271				G	G	G			J	J	J	J	N			J	J	J	J	J	J	Q		N	N	N	P	P	P	X
330	331				G	G	G			J	J	J	J	N			J	J	J	J	J	J	Q		N	N	N	P	P	P	x
390	391				G	G	G			J	J	J	J				J	J	J	J	J	J	Q		N	N	N	P	P	P	X
430	431				G	G				J	J	J	J				J	J	J	J	J	J	Q		N	N	N	P	P	P	X
470	471				G	G				J	J	J	J				J	J	J	J	J	J	Q		N	N	N	P	P	P	x
560	561				G	G				J	J	J					J	J	J	J	M	Q	Q		N	N	N	P	P	P	
680	681				G	G				J	J	J					J	J	J	J	M	Q	Q		N	N	N	P	P	P	
1,000	102				G	G				J	J	J					J	J	J	J	M	Q	Q		N	N	N	P	P	X	
1,200	122				G	G				J	J						N	N	N	N					N	N	N	P	P		
1,500	152				G	G				J	J						N	N	N	N					N	N	N	P	P		
2,200	222				G					J	J						M	M	M	M	M	M	M		N	N	N	P	K	K	
2,700	272				G												M	M	M	M	M	M	M						K	K	
3,300	332				G												M	M	M	M	M	M	M						K	K	
3,900	392				G												M	M	M	M	M	M	M						M	M	
4,700	472				G												P	P	P	P	P	P	P						M	M	
5,600	562				G																								M	M	
6,800	682				G																								N	N	
8,200	822				G																								P	P	
10,000	103				G																							x	X	X	
12,000	123																											x			
15,000	153																											x			
18,000	183																											x			
22,000	223																											x			
27,000	273																											x			
33,000	333																											x			
39,000	393																														
47,000	473																														
56,000	563																														
68,000	683																														
82,000	823																														
100,000	104																														
CAP	$\begin{aligned} & \text { CAP } \\ & \text { Code } \end{aligned}$	25	50	100	25	50	100	200	250	25	50	100	200	250	500	630	25	50	100	200	250	500	630	1000	50	100	200	250	500	630	1000
Case Size		0402			0603					0805							1206								1210						

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
	PAPER					EMBOSSED							

Automotive MLCC - X7R

Capacitance Range

Size		0402			0603							0805						1206							1210						1812		2220					
Soldering		Reflow/Wave			Reflow/Wave							Reflow/Wave						Reflow/Wave							Reflow Only						Reflow Only		Reflow Only					
$\begin{gathered} \text { (L) } \\ \text { Length } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{mm} \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} 1 \pm 0.1 \\ (0.04 \pm 0.004) \\ \hline \end{gathered}$			$\begin{gathered} 1.6 \pm 0.15 \\ (0.063 \pm 0.006) \\ \hline \end{gathered}$							$\begin{gathered} 2.01 \pm 0.2 \\ (0.079 \pm 0.008) \\ \hline \end{gathered}$						$\begin{gathered} 3.2 \pm 0.2 \\ (0.126 \pm 0.008) \\ \hline \end{gathered}$							$\begin{gathered} 3.2 \pm 0.2 \\ (0.126 \pm 0.008) \\ \hline \end{gathered}$						$\begin{gathered} 4.5 \pm 0.3 \\ (0.177 \pm 0.012) \\ \hline \end{gathered}$		$\begin{gathered} 5.7 \pm 0.5 \\ (0.224 \pm 0.02) \\ \hline \end{gathered}$					
(W) Width	$\begin{aligned} & \mathrm{mm} \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} 0.5 \pm 0.1 \\ (0.02 \pm 0.004) \\ \hline \end{gathered}$			$\begin{gathered} 0.81 \pm 0.15 \\ (0.032 \pm 0.006) \end{gathered}$							$\begin{gathered} 1.25 \pm 0.2 \\ (0.049 \pm 0.008) \end{gathered}$						$\begin{gathered} 1.6 \pm 0.2 \\ (0.063 \pm 0.008) \end{gathered}$							$\begin{gathered} 2.5 \pm 0.2 \\ (0.098 \pm 0.008) \\ \hline \end{gathered}$						$\begin{array}{c\|} \hline 3.2 \pm 0.2 \\ (0.126 \pm 0.008) \\ \hline \end{array}$		$\begin{gathered} 5 \pm 0.4 \\ (0.197 \pm 0.016) \\ \hline \end{gathered}$					
$\begin{array}{\|c\|} \hline(\mathrm{t}) \\ \text { Terminal } \end{array}$	$\mathrm{mm}_{\text {(in.) }}$	$\begin{gathered} 0.25 \pm 0.15 \\ (0.01 \pm 0.006) \\ \hline \end{gathered}$			$\begin{gathered} 0.35 \pm 0.15 \\ (0.014 \pm 0.006) \\ \hline \end{gathered}$							$\begin{gathered} 0.5 \pm 0.25 \\ (0.02 \pm 0.01) \\ \hline \end{gathered}$						$\begin{gathered} 0.5 \pm 0.25 \\ (0.02 \pm 0.01) \\ \hline \end{gathered}$							$\begin{gathered} 0.5 \pm 0.25 \\ (0.02 \pm 0.01) \\ \hline \end{gathered}$						$\begin{gathered} 0.61 \pm 0.36 \\ (0.024 \pm 0.014) \\ \hline \end{gathered}$		$\begin{gathered} 0.64 \pm 0.39 \\ (0.025 \pm 0.015) \\ \hline \end{gathered}$					
WVDC		16 V	25 V	50 V	10 V	16 V	25 V	50 V	100 v	200 V	250V	16 V	25 V	50 V	100 V	200 V	250V	16 V	25 V	50 V	100 V	200 V	250 V	500v	16 V	25 V	50 V	100 V	200 V	250 V	50 V	100V	25 V	50V	100v	200 V	250 V	500 V
101	100																												M	Q								
221	220	c	c	c	G	G	G	G	G	G																			M	Q								
271	270	c	c	c	G	G	G	G	G	G																			M	Q								
331	330	c	c	c	G	G	G	G	G	G																			M	Q								
391	390	c	c	c	G	G	G	G	G	G																			M	Q								
471	470	c	c	c	G	G	G	G	G	G																			M	Q								
561	560	c	c	c	G	G	G	G	G	G																			M	Q								
681	680	c	c	c	G	G	G	G	G	G																			M	Q								
821	820	c	c	c	G	G	G	G	G	G																			M	Q								
102	1000	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
122	1220	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
152	1500	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
182	1800	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
222	2200	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
272	2700	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
332	3300	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
392	3900	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
472	4700	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
562	5600	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
682	6800	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
822	8200	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
103	Cap 0.01	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
123	(uF) 0.012	c			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	к	K	K	M	Q	K	K						
153	0.015	c			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	M	Q	K	K						
183	0.018	c			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	M	Q	K	K						
223	0.022	c			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	Q	Q		K	K	K	K	M	Q	K	K						
273	0.027	c			G	G	G	G	J			J	J	J	N	N	N	J	J	J	J	Q	Q		K	K	K	K	M	Q	K	K						
333	0.033	c			G	G	G	G	J			J	J	J	N	N	N	J	J	J	J	Q	Q		K	K	K	K	M	Q	K	K						
393	0.039				G	G	G	G	J			J	J	J	N	N	N	J	J	J	J	Q	Q		K	K	K	K	M	Q	K	K						
473	0.047				G	G	G	G	J			J	J	J	N	N	N	J	J	J	M	Q	Q		K	K	K	K	M	Q	K	K						
563	0.056				G	G	G	G	J			J	J	J	N			J	J	J	M	Q	Q		K	K	K	M	M	Q	K	K						
683	0.068				G	G	G	G	J			J	J	J	N			J	J	J	M	Q	Q		K	K	K	M	M	Q	K	K						
823	0.082				G	G	6	G	J			J	J	J	N			J	J	J	M	Q	Q		K	K	K	M	Q	Q	K	K						
104	0.1				G	G	G	G	J			J	J	J	N			J	J	J	M	Q	Q		K	K	K	M	Q	Q	K	K						x
124	0.12				G	J	J					J	J	N	N			J	J	M	M	Q	Q		K	K	K	P	Q	Q	K	K						
154	0.15				G	J	J					M	N	N	N			J	J	M	M	Q	Q		K	K	K	P	Q	Q	K	K						
224	0.22				G	J	J					M	N	N	N			J	M	M	Q	Q	Q		M	M	M	P	Q	Q	M	M						
334	0.33											N	N	N	N			J	M	P	0				P	P	P	Q	z	z	x	x						
474	0.47											N	N	N	N			M	M	P	Q				P	P	P	Q			x	x						
684	0.68											N	N	N	N			M	Q	Q	Q				P	P	Q	x			x	x						
105	1											N	N	N	N			M	Q	Q	Q				P	Q	Q	z			x	x		z	z	x	x	
155	1.5											N	N	N				Q	Q	Q	Q				P	Q	z	z			x			z	z	z	z	
225	2.2											N	N	N				Q	Q	Q	Q				z	z	z	z			z	z		z	z			
335	3.3																	Q	Q	Q					x	z	z	z			z			z	z			
475	4.7																	Q	Q	Q					x	z	z	z			z			z	z			
106	10																								z	z	z				z		z	z	z			
226	22																																z					
WVDC		16 V	25 V	50 V	10V	16 V	25 V	50 V	100 V	200V	250 V	16 V	25 V	50 V	100 V	200 V	250 V	16 V	25 V	50 V	100 V	200 V	250 V	500V	16 V	25 V	50 V	100 V	200 V	250 V	50 V	100V	25 V	50 V	100 V	200 V	250 V	500 V
Size		0402			0603							0805						1206							1210						1812		2220					

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{gathered} 0.33 \\ (0.013) \\ \hline \end{gathered}$	$\begin{gathered} 0.56 \\ (0.022) \\ \hline \end{gathered}$	$\begin{gathered} 0.71 \\ (0.028) \\ \hline \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \\ \hline \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \\ \hline \end{gathered}$	$\begin{gathered} 1.02 \\ (0.04) \\ \hline \end{gathered}$	$\begin{gathered} 1.27 \\ (0.05) \\ \hline \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \\ \hline \end{gathered}$	$\begin{gathered} 1.52 \\ (0.060) \\ \hline \end{gathered}$	$\begin{gathered} 1.78 \\ (0.07) \\ \hline \end{gathered}$	$\begin{gathered} 2.29 \\ (0.09) \\ \hline \end{gathered}$	$\begin{aligned} & 2.54 \\ & (0.1) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2.79 \\ (0.11) \\ \hline \end{gathered}$
	PAPER					EMBOSSED							

Automotive MLCC - X8R

Capacitance Range

SIZE			0603			0805			1206	
Soldering			Reflow/Wave			Reflow/Wave			Reflow/Wave	
WVDC	WVDC		25V	50V	100V	25 V	50V	100V	25V	50 V
472	pF	4700	G	G	G	J	J	J	J	J
562		5600	G	G	G	J	J	J	J	J
682		6800	G	G	G	J	J	J	J	J
822		8200	G	G	G	J	J	J	J	J
103	uF	0.01	G	G	G	J	J	J	J	J
123		0.012	G	G		J	J	N	J	J
153		0.015	G	G		J	J	N	J	J
183		0.018	G	G		J	J	N	J	J
223		0.022	G	G		J	J	N	J	J
273		0.027	G	G		J	J		J	J
333		0.033	G	G		J	J		J	J
393		0.039	G	G		J	J		J	J
473		0.047	G	G		J	J		J	J
563		0.056	G			N	N		M	M
683		0.068	G			N	N		M	M
823		0.082				N	N		M	M
104		0.1				N	N		M	M
124		0.12				N	N		M	M
154		0.15				N	N		M	M
184		0.18				N			M	M
224		0.22				N			M	M
274		0.27							M	M
334		0.33							M	M
394		0.39							M	M
474		0.47							M	Q
684		0.68							Q	Q
824		0.82							Q	Q
105		1							Q	Q
WVDC	WVDC		25 V	50V	100V	25 V	50V	100V	25 V	50 V
SIZE			0603			0805			1206	

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{gathered} 0.33 \\ (0.013) \end{gathered}$	$\begin{gathered} \hline 0.56 \\ (0.022) \end{gathered}$	$\begin{gathered} \hline 0.71 \\ (0.028) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \end{gathered}$	$\begin{gathered} 1.02 \\ (0.040) \end{gathered}$	$\begin{gathered} 1.27 \\ (0.050) \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \end{gathered}$	$\begin{gathered} \hline 1.52 \\ (0.060) \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \end{gathered}$	$\begin{gathered} 2.29 \\ (0.090) \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \end{gathered}$	$\begin{gathered} 2.79 \\ (0.110) \end{gathered}$
	PAPER					EMBOSSED							

[^0]: All Tests have Accept/Reject Criteria 0/1

