

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Evaluating the ADFS5758 Single-Channel, 16-Bit Current/Voltage Output DAC, Functional Safety Approved for Unipolar Current Output

FEATURES

Full featured evaluation board for the ADFS5758 On-board 2.5 V ADR4525 reference On-board ADP1031-1 isolated PMU with integrated SPI signal isolation channels ACE software for control

EVALUATION KIT CONTENTS

EVAL-ADFS5758SDZ evaluation board

EQUIPMENT NEEDED

EVAL-SDP-CS1Z board Bench top power supply and connector cables

DOCUMENTS NEEDED

ADFS5758 data sheet ACE User Manual

SOFTWARE NEEDED

ACE software for control

GENERAL DESCRIPTION

This user guide describes the evaluation board for the ADFS5758. The ADFS5758 is a functional safety approved, single-channel, voltage and current output, digital-to-analog converter (DAC) with on-chip dynamic power control (DPC) to minimize package power dissipation.

For full details, refer to the ADFS5758 data sheet. Consult the data sheet when using the EVAL-ADFS5758SDZ. The configuration of the various link options is explained in the Evaluation Board Hardware section. The installation of the companion software is described in the Installing the ACE Software and ADFS5758 Plugins section.

The EVAL-ADFS5758SDZ, as shown in Figure 1, requires the EVAL-SDP-CS1Z board. The EVAL-ADFS5758SDZ interfaces to the USB port of the PC via the EVAL-SDP-CS1Z board. The analysis, control, evaluation (ACE) software allows simplified programming of the ADFS5758, and is available with the EVAL-ADFS5758SDZ evaluation board.

EVAL-ADFS5758SDZ EVALUATION BOARD PHOTOGRAPH

Figure 1.

TABLE OF CONTENTS

Features	. 1
Evaluation Kit Contents	. 1
Equipment Needed	. 1
Documents Needed	. 1
Software Needed	. 1
General Description	. 1
EVAL-ADFS5758SDZ Evaluation Board Photograph	. 1
Revision History	. 2
Evaluation Board Hardware	. 3
Power Supplies	. 3
Serial Communication	. 3
ADFS5758 Reference	. 3
ADFS5758 Address Pins	. 3
ADP1031-1 Power Good	. 3
Software Quick Start Procedures	. 5
Installing the ACE Software and ADFS5758 Plugins	. 5

EVAL-ADFS5758SDZ User Guide

Initial Setup	5
ADFS5758 Block Diagram and Functions	7
Initial Configuration	9
DC-to-DC Converter Settings	9
Setting the DAC Output	10
Writing to the ADC Configuration Register	10
Updating Diagnostic Results	10
Example Configuration Sequences	11
ACE Tool Views	12
Macro Tool	12
Register Debugger Tool	12
Events Tool	12
Evaluation Board Schematics and Artwork	13
Ordering Information	18
Bill of Materials	18

REVISION HISTORY

6/2020—Revision 0: Initial Version

EVALUATION BOARD HARDWARE POWER SUPPLIES

The EVAL-ADFS5758SDZ evaluation board contains the ADP1031-1 power management unit (PMU), which generates three of four power supply inputs required by the ADFS5758: AV_{DD1} (+26.7 V), AV_{DD2} (+5.15 V), and AV_{SS} (-15.4 V) device. V_{LOGIC} is the fourth power supply required by the ADFS5758. The JP11 link provides the 3.3 V supply to the V_{LOGIC} input via the V_{LDO} output of the ADFS5758. The AV_{DD2} input can be connected to the AV_{DD1} input via the JP12 link if the V_{0UT2} supply from the ADP1031-1 is not in use. See Table 1 for link options and the default link positions.

The EVAL-ADFS5758SDZ evaluation board operates with a power supply range from -33 V on AV_{SS} to +33 V on AV_{DD1}, with a maximum voltage of 60 V between the two rails. AV_{DD2} requires a voltage between 5 V and 33 V. The V_{DPC+} pin of the ADFS5758 can be driven by AV_{DD1} via the JP6 link. The JP6 link bypasses the dc-to-dc circuitry.

SERIAL COMMUNICATION

The SDP-S system demonstration platform handles communication to the EVAL-ADFS5758SDZ via the PC. By default, the SDP-S board handles the serial port interface (SPI) communication, controls the RESET and LDAC pins, and monitors the FAULT pin of the ADFS5758. The EVAL-ADFS5758SDZ evaluation board can disconnect from the SDP-S board and drive the digital signals from an external source by removing the appropriate links on the P10 link. The option to tie the RESET and LDAC pins to high or low levels can be accessed through the S2 switch and JP4 link.

ADFS5758 REFERENCE

The ADFS5758 can use its internal reference or an external reference. The external reference on board is the ADR4525 and is powered by either the AV_{DD2} generated from ADP1031-1 or the V_{LDO} generated by the ADFS5758. JP5 selects which voltage reference is to be used by the ADFS5758.

ADFS5758 ADDRESS PINS

The ADF\$5758 address pins (AD0 and AD1) are used in conjunction with the ADF\$5758 address bits within the SPI frame to determine which ADF\$5758 device is being addressed by the system controller. AD0 and AD1 can be configured through JP7 and JP8.

ADP1031-1 POWER GOOD

PWRGD is an active high signal that indicates when the ADP1031-1 outputs have reached the desired output voltage. The DS1 light emitting diode (LED) lights up when the power-good signal is low, indicating an error on the ADP1031-1 voltage outputs.

Table 1.	EVAL-A	DFS5758SE)Z Link (Option	Functions
----------	--------	-----------	-----------	--------	-----------

Link	Default Link Position	Function
JP1	В	Position A connects the AVss pin to ground for the unipolar supply option (current output only).
		Position B selects the Vout3 voltage of the ADP1031-1.
JP2	Inserted	Connects the VLOGIC pin of the ADFS5758 to the SVDD1 pin of the ADP1031-1.
JP3	А	Position A selects the 3.3 V output from the SDP-S to the MVDD pin of the ADP1031-1.
		Position B selects the 3.3 V input via the EXT+3.3V_ header to the MVDD pin of the ADP1031-1.
JP4	А	Position A connects the $\overline{\text{LDAC}}$ pin to GND. Position B connects the $\overline{\text{LDAC}}$ pin to the V _{LOGIC} pin.
JP5	А	Position A selects V _{OUT2} of the ADP1031-1 as the input voltage to the ADR4525.
		Position B selects the V_{LDO} pin as the input voltage to the ADR4525.
JP6	Not inserted	Shorts the V_{DPC+} pin to the AV _{DD1} pin, bypassing the positive dc-to-dc circuitry.
JP7	А	Position A connects the AD0 pin to ground. Position B connects the AD0 pin to the V_{LOGIC} pin.
JP8	А	Position A connects the AD1 pin to ground. Position B connects the AD1 pin to the V_{LOGIC} pin.
JP9	Not inserted	Connects the return signal to ground.
JP10	В	Position A selects the REFOUT pin of the ADFS5758 as the input to the REFIN pin of the ADFS5758.
		Position B selects the ADR4525 output as the input to the REFIN pin.
JP11	Inserted	Connects the 3.3 V output of the V_{LDO} pin to the V_{LOGIC} pin.
JP12	A	Position A selects V_{OUT2} of the ADP1031-1 as the input voltage to the AV _{DD2} pin.
		Position B selects the AVDD1 pin as the input voltage to the AVDD2 pin.
JP13	Inserted	Connects V_{OUT1} of the ADP1031-1 to the AV _{DD1} pin.
P10	Inserted	Provides options to disconnect from the SDP-S board and to drive digital signals from an external source. See Table 2 for the specific link options.
S2	Left	In the left position, this link connects the \overline{RESET} pin to the V _{LOGIC} pin.
	Middle (default)	In the middle position (default), this link controls the RESET pin via the SDP-S board.
	Right	In the right position, this link connects the \overline{RESET} pin to ground.

Pin No.	Position	Function
1, 2	Inserted	Connects the FAULT signal from the SDP-S to the MGPO3 pin on the ADP1031-1.
	Not inserted	Disconnects the FAULT signal from the SDP-S to the MGPO3 pin on the ADP1031-1.
3, 4	Inserted	Connects the RESET signal from the SDP-S to the MGPI2 pin on the ADP1031-1.
	Not inserted	Disconnects the RESET signal from the SDP-S to the MGPI2 pin on the ADP1031-1.
5, 6	Inserted	Connects the LDAC signal from the SDP-S to the MGPI1 pin on the ADP1031-1.
	Not inserted	Disconnects the LDAC signal from the SDP-S to the MGPI1 pin on the ADP1031-1.
7, 8	Inserted	Connects the SCLK signal from the SDP-S to the MCK pin on the ADP1031-1.
	Not inserted	Disconnects the SCLK signal from the SDP-S to the MCK pin on the ADP1031-1.
9, 10	Inserted	Connects the SDO signal from the SDP-S to the MI pin on the ADP1031-1.
	Not inserted	Disconnects the SDO signal from the SDP-S to the MI pin on the ADP1031-1.
11, 12	Inserted	Connects the SDI signal from the SDP-S to the MO pin on the ADP1031-1.
	Not inserted	Disconnects the SDI signal from the SDP-S to the MO pin on the ADP1031-1.
13, 14	Inserted	Connects the \overline{SYNC} signal from the SDP-S to the \overline{MSS} pin on the ADP1031-1.
	Not inserted	Disconnects the \overline{SYNC} signal from the SDP-S to the \overline{MSS} pin on the ADP1031-1.
15, 16	Inserted	Connects the PWRGD signal from the SDP-S to the PWRGD pin on the ADP1031-1.
	Not inserted	Disconnects the PWRGD signal from the SDP-S to the PWRGD pin on the ADP1031-1.

Table 2. Link Options for the P2_ Header (All Links are Inserted by Default)

305

SOFTWARE QUICK START PROCEDURES INSTALLING THE ACE SOFTWARE AND ADFS5758 PLUGINS

The EVAL-ADFS5758SDZ software uses the Analog Devices, Inc., ACE software. For instructions on the use of the ACE software, see the www.analog.com/ACE product page.

When the installation completes, the EVAL-ADFS5758SDZ evaluation board plugin window appears when the ACE software opens (see Figure 2).

Figure 2. EVAL-ADFS5758SDZ Evaluation Board Plugin Window After Opening the ACE Software

INITIAL SETUP

To set up the EVAL-ADFS5758SDZ, take the following steps:

- 1. Connect a USB cable to the PC and then to the SDP-S board.
- 2. Connect the SDP-S board to the EVAL-ADFS5758SDZ. The PC recognizes the EVAL-ADFS5758SDZ.
- 3. Power up the EVAL-ADFS5758SDZ with the relevant power supplies.
- 4. If not opened already, open the ACE software. The EVAL-ADFS5758SDZ appears in the **Attached Hardware** pane.

Figure 3. EVAL-ADFS5758SDZ Plugin Not Installed

5. When setting up the evaluation board for the first time, the EVAL-ADFS5758SDZ plugin may need to be installed. If the plugin appears as shown in Figure 6, go to Step 7. If the plugin appears as shown in Figure 3, click the button that is marked in red in Figure 3. After clicking this button, the popup window shown in Figure 4 appears. Click **Yes**.

Analysis	Control Evaluation - Plug-in Not Installed	8
1	One or more of the systems selected has no matching plug-in installed. Do you want to launch the Plug-in Manager to search online? Note: 1. The Plug-in Manager requires an internet connection. 2. Selecting no to add systems to the system view anyway.	
	<u>Y</u> es <u>N</u> o	
	Figure 4. Installing Plugin Popup Window	

window appears as shown in Figure 5 Nav

6. A new window appears, as shown in Figure 5. Navigate to the **Board.ADFS5758** plugin and click **Install Selected**. The EVAL-ADFS5758SDZ plugin installs and displays, as shown in Figure 6.

istalled Packages	Board.AD5675 This plug-in is obsolete, please use Board.NanoDAC plug-in as replacement.	Available
allable Packages	Board.AD5675R This plug-in is obsolete, please use Board.NanoDAC plug-in as replacement.	Available
iter Repository	Board.AD5676 This plug-in is obsolete, please use Board.NanoDAC plug-in as replacement.	Available
ilable Updates	Board.AD5676R This plug-in is obsolete, please use Board.NanoDAC plug-in as replacement.	Available
	Board.AD5683R This plug-in is obsolete, please use Board.NanoDAC plug-in as replacement.	Available
	Board.AD5686R This plug-in is obsolete, please use Board.NanoDAC plug-in as replacement.	Available
	Board.AD5693R This plug-in is obsolete, please use Board./KanoDAC plug-in as replacement.	Available
	Board.AD5696R This plug-in is obsolete, please use Board.NanoDAC plug-in as replacement.	Available
	Board.AD5753 Single-Channel, 16-Bit Current and Voltage Output DAC with Dynamic Power Control	Available
	Board.AD5766 The AD5766 ACE plugin supports the EVAL-AD5766 evaluation board. AD5766 is a 16	Available
	Board.AD6688 AD6685 Evaluation Board	Available
	Board.AD738X The AD738X ACE Plugin supports the EVAL-AD7380FMCZ, EVAL-AD7381FMC2 and EVAL-	Available
	Board.AD9152 Plugin for evaluating the AD9152 high-speed DAC.	Avdilable
Anthe Fallings		4.11

Figure 6. Attached Hardware Pane with EVAL-ADFS5758SDZ Connection

 Double-click EVAL-ADFS5758SDZ to open the ADFS5758 block diagram. The INITIAL CONFIGURATION pane appears on the left side of the window. Several register settings can be configured in this pane and are written to the device in the appropriate order. The DIG_DIAG_STATUS, RESET_OCCURRED, and CAL_MEM_UNREFRESHED LED indicators in the window illuminate red by default. Writing the initial configuration values clears these error flags. If the device is power cycled, or if the USB cable is disconnected and reconnected while the ACE software is open, contact with the EVAL-ADFS5758SDZ can be lost. If contact is lost, click the **System** tab, click the USB symbol on the **SDP-S Controller**, and then click **Acquire** to communicate with the EVAL-ADFS5758SDZ.

Figure 7. ADFS5758 Block Diagram in the ACE Software

ADFS5758 BLOCK DIAGRAM AND FUNCTIONS

The ADFS5758 ACE block diagram, as shown in Figure 8, appears similar to the block diagram shown in the ADFS5758 data sheet for simplified correlation of the functions on the EVAL-ADFS5758SDZ evaluation board with the descriptions given in the ADFS5758 data sheet.

A full description of each block and register setting is available in the ADFS5758 data sheet. The full window ADFS5758 block diagram, with labels, is shown in Figure 8. Table 3 describes the functionality of each block.

Figure 8. ADFS5758 ACE Block Diagram with Labels

Table 3. ADFS5758 Block Diagram Label Functions	(See Figure 8)
---	----------------

Label	Function Description
А	To apply any changes made to the block diagram or to register values in the memory map to the device, click Apply Changes .
В	To read back all of the registers of the device, click Read All .
С	Click Reset Chip to reset the ADFS5758. The Reset Chip button has the same functionality as the software reset of the ADFS5758.
D	Click Diff to show the registers that are different from the data stored on the device. This function shows what has changed since the last time the registers were read.
E	Click Software Defaults to load the software defaults of the device. These values are not written to the hardware. Click Apply Changes (Label A in Figure 8) to write the software default values to the hardware.
F	Click to view the memory map side by side with the block diagram.
G	The AD0 and AD1 check boxes set the device under test (DUT) address of the device and must correspond to the JP12 and JP14 links on the hardware. A selected box represents a high state. A cleared box represents a low state.
Н	If the /RESET box is selected, the SDP-S sets the RESET pin high. Otherwise, the SDP-S pulls RESET low.
I	If the /LDAC box is selected, the SDP-S sets the LDAC pin high. Otherwise, the SDP-S pulls LDAC low.
J	The ACE plugin monitors the FAULT pin. If the FAULT pin is low, the /FAULT indicator LED illuminates red.
К	The VI_OUT field displays the calculated output at the VI _{OUT} pin and displays if the output is in volts, milliamperes, or is high impedance (high-Z).
L1 to L15	The graphical user interface (GUI) access for several registers. Popup menus, dropdown menus, and hexadecimal text fields are available in the GUI to configure several registers of the ADFS5758. To write the changes to the device, click Apply Changes (Label A). The functions within the GUI that control various registers (Label L1 through Label L15 in Figure 8) are described in Table 4.
М	The Calibration Memory Refresh button initiates a write to the key register to perform a calibration memory refresh.
Ν	The SW LDAC button initiates a write to the key register to perform a software LDAC command.
0	The NOP Command button initiates a write to Address 0x00 for a no operation (NOP) command.
Р	The Configure ADC button writes the data selected in the ADC Config pane (Label L15) to the ADC configuration register.

Label	Function Description
Q	The Two Stage Readback Select pane initiates two-stage readback through the two-stage readback select register. Click Readback to initiate a write to the two-stage readback select register and issue a NOP command.
R	In the DIGITAL DIAGNOSTIC RESULTS pane, click Update and Readback Digital Diagnostic Result button to trigger a write 1 to clear operation and initiate a readback from the digital diagnostic results register.
S	In the ANALOG DIAGNOSTIC RESULTS pane, click Update and Readback Analog Diagnostic Result button to trigger a write 1 to clear operation and initiate a readback from the analog diagnostic results register.
Т	If the HART_EN box is checked, the HART_EN bit = 1 in the General-Purpose Configuration 1 register.
U	Click Proceed to Memory Map to open the ADFS5758 memory map (see Figure 9).
V	Click Example Sequences to open the example sequences window (see Figure 15).

Table 4. Register Controls Accessible via the GUI (See Label L1 to L15 in Table 3 and in Figure 8)

Label	Function Description
L1	The Diagnostic Configuration button opens the associated popup menu.
L2	When the GP Config button clicked, a popup menu appears.
L3	When the Key register menu is clicked, a dropdown list appears.
L4	When the Fault Pin Config button is clicked, a popup menu appears.
L5	When the WDT Config button is clicked, a popup menu appears.
L6	The Frequency Monitor text field displays the value in the frequency monitor when read.
L7	The Clear Code text field inserts a clear code value in hexadecimal format.
L8	The User Gain text field inserts a user gain value in hexadecimal format.
L9	The User Offset text field inserts a user offset value in hexadecimal format.
L10	The DAC Input Reg text field inserts the DAC value in hexadecimal format.
L11	The 16 Bit DAC block opens a popup menu when clicked.
L12	The DAC Output Reg control displays the hexadecimal value currently set in the DAC output register.
L13	The DC-DC Converter block opens the dc-to-dc configuration popup menu.
L14	The Status Register pane displays the contents of the status register including any ADC conversion result.
L15	The ADC Config pane contains a combination of dropdown menus and a text field to enter the ADC input data.

ert > System > Subsystem_1 > 1	VAL-ADFS575	8SDZ > AD	FSS758 > ADFSS758 Memory Map																		E
Start X System X ADF55758 X	ADP55758 N	Aemory Map	×																		
Apply Apply Selected Read All	Read Selecte	Reset Chip	Diff Software Defaults Export	Chip View Side-By-Side																	
Select View	Registers																	_	_	_	
Registers Rit Fields	.1.	Address (Hex)	Name	Data (Hex)	Dat	a (Bir	naryj														
		0000	* NOP	000000	0	0	0	0	0 0	0	0	0 1	0 0	0	D	0	0	0 0	0	D	0
Is Dirty Filter		0001	* DAC_INPUT	000000	0	0	0	0	0 0	0	0	0		0	0	0	0	0 0	0	0	0
Only Show Registers To Apply 🔘		0002	- DAC_OUTPUT	000000	0	0	0	0	0 0	0	0	0 1	0 0	0 0	0	0	0	0 0	C	0	0
		0003	· CLEAR_CODE	000000	0	0	0	0	0 0	0	0	0		0	0	0	0	0 0	0	0	0
Register Maps Filter		0004	· USER_GAIN	OOFFFF	0	0	0	0	0 0	1	1	1		1	1	1	1	1 1	1	1	1
Functional Groups Filter		0005	* USER_OFFSET	005000	0	0	0	0	0 0	1	0	0	0 0	0	0	0	0	0 0	0	0	0
Bit Field Search		0006	* DAC_CONFIG	000,000	0	0	0	0	0 0	0	0	0		1 1	0	0	0	0 0	0	10	0
earch Bit Fields Clear		0007	* SW_LDAC	000000	0.	0	0	0.	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0
sults	-	0008	* KEY	000000	0	0	0	0	0 0	0	0	0 1		0	0		0	0 0	0	10	0
000: REGISTER, ADDRESS		0009	* GP_CONFIG1	000204	0	0	0	0	0 0	0	0	0		0	1	0	0	0 0	0	0	1
001: DAC_INPUT_DATA	-	000A	- GP_CONFIG2	000200	0	0	0	0	0 0	0	0	0 1	0	0	1	0	0	0 0	0	10	0
001: FAULT PIN_STATUS		000B	* DCDC_CONFIG1	000000	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0
002 REGISTER ADDRESS		000C	+ DCDC_CONFIG2	000100	0	0	0	0	0.0	0	0	0 1	0 0	0	0	1	0	0 0	0	10	0
003: CLEAR_CODE		000D	* RESERVED	600000	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	0	0 0	0	0	0
003: FAULT_PIN_STATUS		000E	* RESERVED	000000	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0
004: OSER_GAIN 004: REGISTER_ADDRESS		000F	· WDT_CONFIG	000009	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	1	0
0005: USER_OFFSET		0010	* DIGITAL_DIAG_CONFIG	00005D	0	0	0	0	0 0	0	0	0 1	0 0	0 0	D	0	0	1 0	1	1	1
005: FAULT_PIN_STATUS		0011	* ADC_CONFIG	000000	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	0	0 0	0	0	0
2006: OVRING_EN		0012	* FAULT_PIN_CONFIG	000000	0	0	0	0	0 0	0	0	0 1		0 0	0	-	0	0 0	0	10	0
0006: DVT_EN		0013	* TWO_STAGE_READBACK_SELECT	000000	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0
0006: KSET_EXT_EN 0006: SR_EN		0014	· DIGITAL_DIAG_RESULTS	004000	0	0	0	0	0 0	1	0	1	0 0	0	0	0	0	0 0	0	0	0
0006: SR_STEP		0015	ANALOG DIAG RESULTS	000000	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	0	0 0	0	0	0
0006: REGISTER_ADDRESS 0006: FAULT_PIN_STATUS		0016	* STATUS	100000	0	1	0	0	0 0	0	0	0 1	0 0	0 0	0	0	0 1	0 0	0	0	0
007: LDAC_COMMAND 0007: REGISTER_ADDRESS		0017	· CHIP ID	000101	0	0	0	0	0 0	0	0	0	0 0	0 0	0	1	0	0 0	0	0	0
0007: FAULT_PIN_STATUS 0008: KEY_CODE		0018	* FREO MONITOR	000000	0	0	0	0	0 0	0	0	0		0	0	0	0	0 0	0	0	0
0008: REGISTER_ADDRESS 0008: FAULT_PIN_STATUS		0019	* DEVICE ID 0	000000	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0
0009: OSC_STOP_DETECT_EN 0009: SPI_DIAG_QUIET_EN		001A	* DEVICE ID 1	000000	0	0	0	0	0 0	0	0	0		0	0	0	0	0 0	0	10	0
0009: CLEAR_NOW_EN 0009: NEG_OFFSET_EN		0016	* DEVICE ID 2	1000000	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0
0009: HART EN		001 C	* GENERIC ID	000000	0	0	0	0	0 0	0	0	0	0 0	0 0	1p1	0	0	0 0	0	0	0

Figure 9. ADFS5758 Memory Map in the ACE Software

INITIAL CONFIGURATION

An initial configuration wizard is available when opening the ADFS5758 plugin. The initial configuration wizard allows quick configuration of the ADFS5758 and provides configuration of the clock output in the general-purpose configuration register, the dc-to-dc settings, the DAC configuration, and the DAC input register. Clicking the **Apply Changes** button initiates the configured settings in the order of the recommended power-up sequence described in the ADFS5758 data sheet.

DC-TO-DC CONVERTER SETTINGS

If the V_{DPC+} pin is not tied directly to AV_{DD1} , enable the dc-to-dc converter for proper operation. This step must be completed before configuring the DAC output. The **DC-DC Configuration** popup menu, as shown in Figure 10, contains the dc-to-dc settings required to configure the ADFS5758 output properly. After the desired settings are selected, click the **Close** button and then click **Apply Changes**.

Figure 10. DC-DC Configuration Popup Menu

Rev. 0 | Page 9 of 20

UG-1688

2209-010

SETTING THE DAC OUTPUT

To configure the DAC output, use the **DAC Config Register** popup menu (see Figure 11). Click the **16 Bit DAC** block in the block diagram to display the DAC configuration register. Select the appropriate settings, and then click **Apply Changes**. It is recommended to disable the output until the correct value in the DAC input register is written to the device.

To change the DAC voltage or current output level, write the appropriate hexadecimal code to the DAC input register, and then click **Apply Changes**. Click **SW LDAC** to issue a software LDAC command, or pull the LDAC pin low to update the DAC output register with the values in the DAC input register. Enable the DAC output by checking the **OUT_EN** (**Enable VI_OUT**) checkbox, and then click **Apply Changes**. The programmed voltage or current is then reflected at the VI_{OUT} pin.

Figure 11. ADFS5758 DAC Config Register Popup Menu

2209-011

WRITING TO THE ADC CONFIGURATION REGISTER

The procedure to set up and configure the ADC input node is discussed in the ADFS5758 data sheet. For this reason, writing to the ADC configuration register through the **Apply Changes** function is disabled.

The dropdown list in the **SEQUENCE_COMMAND** pane contains the list of available commands. The hexadecimal text field in the **SEQUENCE_DATA** section is used in conjuction with the **SEQUENCE_COMMAND** bits. The dropdown list in the **ADC IP SELECT** section is used to select the desired input node for the ADC to convert. Click **Configure ADC** to initiate a write to the ADC configuration register. A register read must be performed to see the ADC result in the status register.

Figure 12. ADFS5758 ADC Configuration Register

UPDATING DIAGNOSTIC RESULTS

The ADFS5758 has a digital diagnostic results register and an analog diagnostic results register, which contain error flags for the on-chip digital and analog diagnostic features. Writing 1 to the respective error flags updates the error flag status.

To update the digital and analog diagnostic results registers, click **Update and Readback Digital Diagnostic Result** for digital diagnostic results registers or **Update and Readback Analog Diagnostic Result** for analog diagnostic results registers. These buttons initiate the writing of a 1 to the selected error flag and then read back the updated diagnostic result.

Figure 13 shows the digital diagnostic results register. Figure 14 shows the analog diagnostic results register.

O SI CRC ERR O SLIPBIT_ERR O SCLK_COUNT_ERR O CFG_LOCK_CHECK_ERR O INVALD_SPLACCESS_ERR O CAL_MEM_CRC_ERR	OINVERSE_DAC_CHECK_ERR ODUAL_CAL_ERR ODAC_LATCH_MON_ERR OBKGND_CRC_ERR OWDT_EARLY_ERR	WDT_LATE_ERR WDT_LATE_ERR WILERR ORESET_OCCURRED SLEW_BUSY OCAL_MEM_UNREFRESHEI
Update	and Readback Digital Diagnostic Re	sult

2209-014

Figure 14. ADFS5758 ANALOG DIAGNOSTIC RESULTS Register

EXAMPLE CONFIGURATION SEQUENCES

Several example configuration sequences are available. Click **Example Sequences** to open the **Sample ADFS5758 Sequences** window shown in Figure 15. To enable any of the sequences,

click the relevant sequence button, as shown in Figure 16. The sequence runs immediately and the output changes accordingly. To return to the main window, click **Back to ADFS5758**.

Figure 15. Example Sequences Window

Figure 16. Selecting an Example Sequence

ACE TOOL VIEWS

The ACE software provides additional functionality to the main view described in this user guide. Open these views from the View menu on the application toolbar. The ACE software features a macro tool, a register debugger tool, and an events tool.

MACRO TOOL

The macro tool records and saves commands as an ACE macro file. This feature is useful when sharing macros with other users to perform the same task multiple times. The user can import and run an ACE macro file.

REGISTER DEBUGGER TOOL

Use the register debugger tool to perform raw writes to and reads from the device. The register debugger affects only the hardware and does not write to the memory map of the ACE software.

EVENTS TOOL

The events tool view contains a list of errors, warnings, and information messages generated within the application software.

EVALUATION BOARD SCHEMATICS AND ARTWORK

Figure 17. ADFS5758 Device

Figure 18. ADFS5758 Power Supplies and Reference Options

UG-1688

EVAL-ADFS5758SDZ User Guide

Figure 19. ADP1031-1 Device

EVAL-ADFS5758SDZ User Guide

55509-050

Figure 20. EVAL-SDP-CS1Z Board Connections

EVAL-ADFS5758SDZ User Guide

Figure 21. ADFS5758 Output Stage

ORDERING INFORMATION BILL OF MATERIALS

Table 5. Bill of Materials

Reference Designator	Description	Manufacturer	Part Number
#FAULT_, #LDAC_, #RESET_, #SCLK_, #SDI_, <u>#SDO_</u> , <u>#SYNC_, +VSENSE, -VSENSE,</u> FAULT_, LDAC_, RESET_, SYNC_, CHART,	Test point, green	Vero Technologies	20-313138
CLKOUT_, PWRGD_, RETURN, SCLK_, SDI_, SDO_, VIOUT, VIOUT_TERMINAL			
+3.3V_, ADR_REF_, AVDD1, AVDD2, AVSS, PVIN, REFIN, REFOUT, VDPC+, VLDO	Test point, red	Vero Technologies	20-313137
AGND1 to AGND5, DGND1, DGND2, DGND3, PGND1, PGND2	Test point, black	Vero Technologies	20-2137
C1, C3	Multilayer ceramic capacitor (MLCC), X7S	TDK	CGA6M3X7S2A475K200AB
C10	Capacitor, ceramic, NP0	Yageo	CC0402JRNPO9BN220
C2, C4, C6, C11, C12, C13	Capacitor, ceramic, X5R	Taiyo Yuden	LMK105BJ104KV-F
C14, C15, C16	Capacitor, ceramic, X7R	TDK	CGA2B3X7R1H104K050BB
C17	Capacitor, ceramic, X7R, general-purpose	Yageo	CC1206KKX7R9BB105
C19	Capacitor, ceramic, X7R	Yageo	CC0603KRX7R9BB103
C20, C22, C23, C24	Capacitor, ceramic, X7R	AVX	0603YC105KAT2A
C21	Capacitor, ceramic, 2.2 μF, 50 V, 10% X7R, 1206	Murata	GCM31CR71H225KA55K
C25	Capacitor, ceramic, X7R, 1206	AVX	12065C154KAT2A
C26	Capacitor, ceramic, X7R, 1206	AVX	12065C473JAT2A
C5, C7, C9	Capacitor, ceramic, X7R, general-purpose	Murata	GRM21BZ71H475KE15L
C8	Capacitor, ceramic, X6S, general-purpose	Murata	GRM188C81C475KE11D
D1	Diode, Schottky, rectifier, surface-mount device (SMD)	Diodes Incorporated	BAT46W-7-F
D2	Diode, TVS, bidirectional	STMicroelectronics	SMAJ33CA-TR
D4	Diode, Schottky, small signal	STMicroelectronics	BAT54KFILM
DS1, DS4	LED, SMD, 0603, red	Vishay	TLMS1000-GS08
DS2	LED, SMD, 0603, green	Lumex	SML-LX0603GW-TR
EXT+3.3V_, PVIN_	Connector, printed circuit board (PCB), two position terminal block header, single-row, 5.08 mm pitch	Phoenix Contact	1757242
JP1, JP3, JP4, JP5, JP7, JP8, JP10, JP12	Connector, PCB, three position, male, header, unshrouded, single-row, 2.54 mm pitch	Harwin	M20-9990345
JP2, JP6, JP9, JP11, JP13	Connector, PCB, BERG, male, two position, single-row, M000385	Amphenol	69157-102
L1, L3	Inductor, shielded power, 12.25 Ω dc resistance, 0.135 A	Coilcraft Inc.	XFL2006-104MEB
L2	Inductor, shielded power	Coilcraft Inc.	LPS4018-473MRB
P10	Vertical type receptacle for SDP breakout board	Hirose	FX8-120S-SV(21)
P2_	Connector, PCB, header, square post, straight, dual-row	Samtec	TSW-108-14-T-D
Р3	Terminal block, five position, green	Phoenix Contact	1727049
P4 to P9	Connector, PCB, pin socket	Vero Technologies	66-3472
R1, R10, R13, R30, R44	Resistor, thick film, chip	Multicomp	MC0063W060311K
R11	Resistor, metal film, industrial precision	Vishay	CMF5510R000FHEB
R15, R16, R20, R31, R33, R34	Resistor, thick film, chip	Multicomp	MC0063W06031100K
R2	Resistor, precision, thick film, chip, R1206	Panasonic	ERJ-8ENF1004V
R3	Resistor, precision, thick film, chip	Panasonic	ERJ-6ENF2103V
R38, R39	Resistor, thin film, chip, high reliability	Panasonic	ERA-6AEB202V

Reference Designator	Description	Manufacturer	Part Number
R4	Resistor, precision, thick film, chip	Panasonic	ERJ-1GNF1003C
R41, R42, R43	Resistor, chip, SMD	Vishay	CRCW06030000Z0EA
R5	Resistor, precision, thick film, 0603	Panasonic	ERJ-3EKF5903V
R6	Resistor, precision, thick film, R0603	Panasonic	ERJ-3EKF1822V
R7	Resistor, film, SMD, 0603	Multicomp	MC0063W0603139K
R8	Resistor, thick film, chip	Vishay	CRCW0603715KFKEA
R9	Resistor, thin film, precision	TE Connectivity	RN73C1J13K7BTG
R12	Resistor, thin film, chip, high reliability	Panasonic	ERA-6AEB202V
R37	Resistor, precision, thin film, chip	TE Connectivity	CPF0603B20RE1
S2	Switch, tiny, washable, toggle switches	Apem Components	TL39P0050
T1	Flyback transformer, EPX6, surface- mount transformer (SMT)	Wurth Elektronik	750316743
TP1, TP2	Connector, PCB test point, green	Vero Technologies	20-313138
U1	3-channel, isolated micropower management unit, seven digital isolators	Analog Devices	ADP1031ACPZ-1-R7
U2	IC, 32 kb serial electrically erasable programmable read only memory (EEPROM)	Microchip Technology	24LC32A/SN
U4	Ultralow noise, high accuracy voltage reference	Analog Devices	ADR4525BRZ
U5	16-bit, current and voltage output DAC, dynamic power control, HART® connectivity	Analog Devices	ADFS5758BCPZ-RL7

Table 6. Bill of Materials (Uninserted Components)

Reference Designator	Description	Manufacturer	Part Number
C18	Capacitor, ceramic, X7R	Yageo	CC0603KRX7R9BB103
C27	Capacitor, ceramic, X7R, general-purpose	Murata	GRM188R71A225KE15D
R19, R32, R35	Resistor, thick film, chip	Multicomp	MC0063W06031100K
R36	Resistor, precision, thick film, chip	Panasonic	ERJ-6ENF2000V

NOTES

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2020 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. UG22209-6/20(0)

www.analog.com

Rev. 0 | Page 20 of 20