

4A High Efficiency Switching Regulators

FEATURES

- Wide Input Voltage Range 3.5V to 30V
- Low Quiescent Current: 7mA
- Internal 4A Switch
- Very Few External Parts Required
- Self Protected Against Overloads
- Shutdown Mode Draws Only 100µA Supply Current
- Flyback Regulated Mode Has Fully Floating Outputs
- Comes in Standard 5-Pin Package
- Can Be Externally Synchronized (See LT1072 Data Sheet)

APPLICATIONS

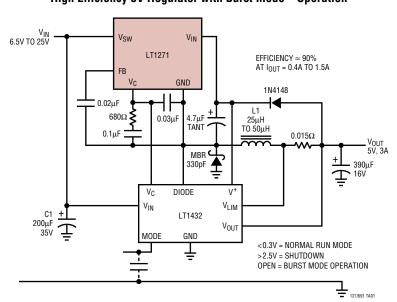
- Boost Converter
- High Efficiency Buck Converter
- PC Power Supply with Multiple Outputs
- Battery Up-Converter
- Negative-to-Positive Converter

USER NOTE:

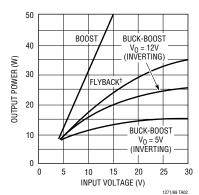
This data sheet is only intended to provide specifications, graphs, and a general functional description of the LT1271/LT1269. Application circuits are included to show the capability of the LT1271/LT1269. A complete design manual (AN-19) should be obtained to assist in developing new designs. This manual contains a comprehensive discussion of both the LT1070 and the external components used with it, as well as complete formulas for calculating the values of these components. The manual can also be used for the LT1271/LT1269 by factoring in the higher switch current rating and higher operating frequency.

DESCRIPTION

The LT®1271 and LT1269 are monolithic high power switching regulators. Identical to the popular LT1070, except for switching frequency (LT1271 = 60kHz, LT1269 = 100kHz) and slightly lower switch current, they can be operated in all standard switching configurations including buck, boost, flyback and inverting. A high current, high efficiency switch is included on the die along with all oscillator, control and protection circuitry. Integration of all functions allows the LT1271/LT1269 to be built in a standard TO-220 power package. This makes them extremely easy to use and provides "bust proof" operation similar to that obtained with 3-pin linear regulators.


The LT1271/LT1269 operate with supply voltages from 3.5V to 30V, and draw only 7mA quiescent current. By utilizing current mode switching techniques, they provides excellent AC and DC load and line regulation.

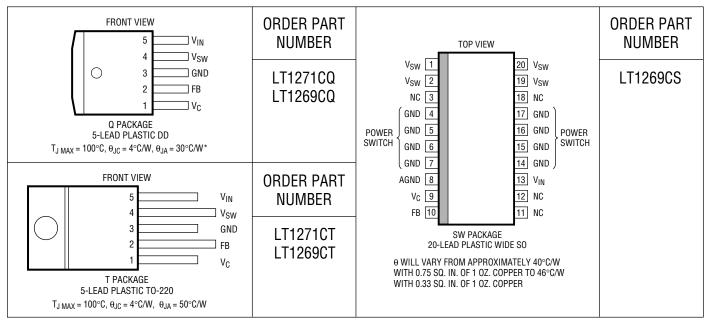
A patented adaptive antisat switch drive allows very wide ranging load currents with no loss in efficiency. An externally activated shutdown mode reduces total supply current to $100\mu A$ typical for standby operation.


7, LTC and LT are registered trademarks of Linear Technology Corporation. Burst Mode is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

High Efficiency 5V Regulator with Burst Mode™ Operation

Maximum Output Power


BUCK MODE OUTPUT POWER \approx (3.5A)(V_{OUT}) [†]TRANSFORMER TURNS RATIO MUST BE OPTIMUM TO ACHIEVE FULL POWER.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	30V
Switch Output Voltage	
Feedback Pin Voltage (Transient, 1ms)	
Storage Temperature Range65°C to 1	50°C

Operating Junction Temperature Range		
Operating	0°C to	100°C
Short Circuit	0°C to	125°C
Lead Temperature (Soldering, 10 sec.)		300°C

PACKAGE/ORDER INFORMATION

^{*}With device soldered to 1/2 square inch of 1oz copper over backside or internal layer ground plane. Consult factory for Industrial and Military grade parts.

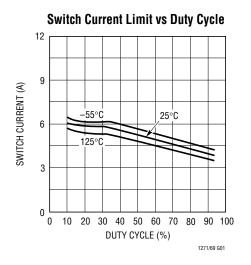
ELECTRICAL CHARACTERISTICS $V_{IN} = 15V$, $V_C = 0.5V$, $V_{FB} = V_{REF}$, switch pin open, unless otherwise noted.

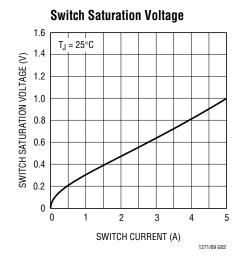
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{REF}	Reference Voltage	Measured at Feedback Pin $V_C = 0.8V$	•	1.224 1.214	1.244 1.244	1.264 1.274	V
I _B	Feedback Input Current	V _{FB} = V _{REF}	•		350	750 1100	nA nA
gm	Error Amplifier Transconductance	$\Delta I_C = \pm 25 \mu A$	•	3000 2400	4400	6000 7000	μmho μmho
	Error Amplifier Source or Sink Current	V _C = 1.5V	•	150 120	200	350 400	μA μA
	Error Amplifier Clamp Voltage	Hi Clamp, V _{FB} = 1V Lo Clamp, V _{FB} = 1.5V		1.8 0.25	0.38	2.3 0.52	V
	Reference Voltage Line Regulation	$3V \le V_{IN} \le V_{MAX,} V_C = 0.8V$	•			0.03	%/V
A _V	Error Amplifier Voltage Gain	$0.9V \le V_C \le 1.4V$		500	800		V/V
-	Minimum Input Voltage (Note 3)		•		2.8	3.0	V
IQ	Supply Current	$3V \leq V_{IN} \leq V_{MAX}, V_C = 0.6V$			7	10	mA

$\textbf{ELECTRICAL CHARACTERISTICS} \quad \textbf{V}_{IN} = 15 \textbf{V}, \ \textbf{V}_{C} = 0.5 \textbf{V}, \ \textbf{V}_{FB} = \textbf{V}_{REF,} \ \text{switch pin open, unless otherwise noted}.$

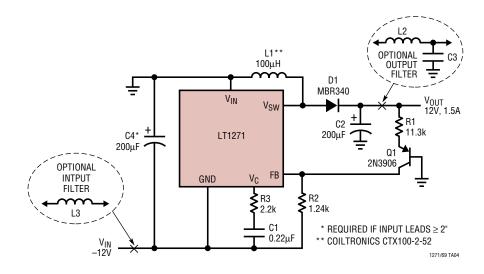
SYMBOL	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
	Control Pin Threshold	Duty Cycle = 0			0.7 0.5	0.9	1.08 1.25	V
	Normal/Flyback Threshold on Feedback Pin				0.4	0.45	0.54	V
$\overline{V_{FB}}$	Flyback Reference Voltage	I _{FB} = 50μA		•	15 14	16.3	17.6 18	V
V_{FB}	Change in Flyback Reference Voltage	$0.05 \le I_{FB} \le 1 \text{mA}$			4.5	6.8	8.5	V
	Flyback Reference Voltage Line Regulation	$I_{FB} = 50\mu A$ $3V \le V_{IN} \le V_{MAX}$				0.01	0.03	%/V
	Flyback Amplifier Transconductance (gm)	$\Delta I_C = \pm 10 \mu A$			150	300	650	μmho
	Flyback Amplifier Source and Sink Current	V _C = 0.6V I _{FB} = 50μA	Source Sink	•	15 25	32 40	70 70	μA μA
BV	Output Switch Breakdown Voltage	$3V \le V_{IN} \le V_{MAX}$ $I_{SW} = 1.5 \text{mA}$		•	60	75		V
V _{SAT}	Output Switch (Note 1) "On" Resistance			•		0.2	0.33	Ω
	Control Voltage to Switch Current Transconductance					6.4		A/V
I _{LIM}	Switch Current Limit (Note 2)	Duty Cycle = 50% Duty Cycle = 80%		•	4 3.2		8 8	A A
$\frac{\Delta l_{IN}}{\Delta l_{SW}}$	Supply Current Increase During Switch On-Time					25	40	mA/A
f	Switching Frequency	LT1271 LT1269		•	50 85	60 100	70 115	kHz kHz
DC (max)	Maximum Switch Duty Cycle	LT1271 LT1269			85 80	92 90	95 95	% %
	Flyback Sense Delay Time					1.5		μs
	Shutdown Mode Supply Current	$3V \le V_{IN} \le V_{MAX}, V_{C}$; = 0.05V			100	400	μА
	Shutdown Mode Threshold Voltage	$3V \le V_{IN} \le V_{MAX}$		•	100 50	150	250 300	mV mV

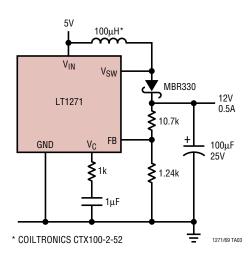
The ullet denotes the specifications which apply over the full operating temperature range.


Note 1: Measured with V_{C} in hi clamp, V_{FB} = 0.8V.

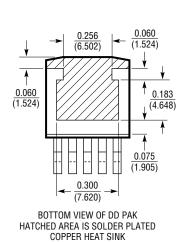

Note 2: For duty cycles (DC) between 50% and 85%, minimum guaranteed switch current is given by $I_{LIM} = 2.67 (2 - DC)$.

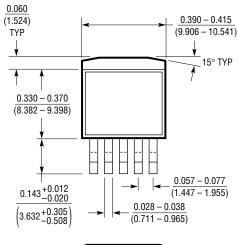
Note 3: Minimum input voltage.

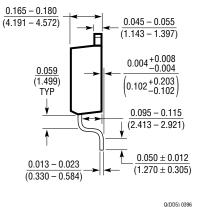

TYPICAL PERFORMANCE CHARACTERISTICS


TYPICAL APPLICATIONS

Negative-to-Positive Buck-Boost Converter

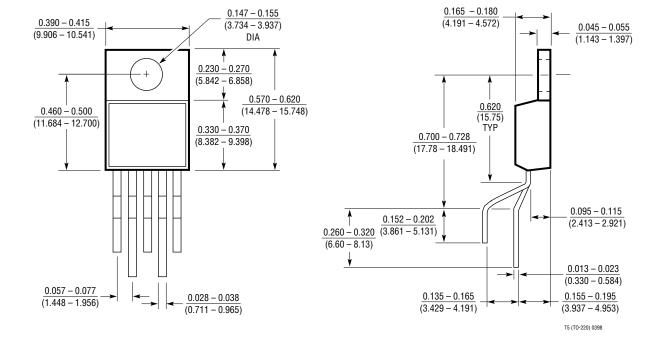

TYPICAL APPLICATIONS


Boost Converter (5V to 12V)

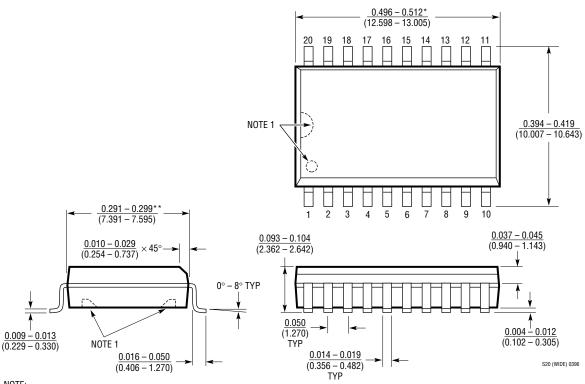


PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

Q Package 5-Lead Plastic DD Pak (LTC DWG # 05-08-1461)



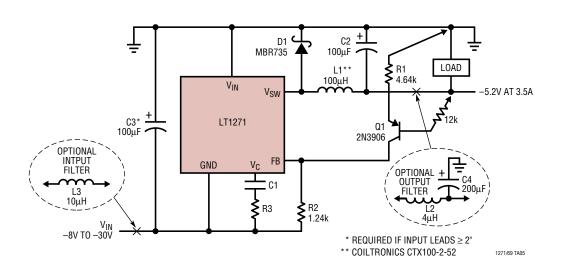
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.


T Package 5-Lead Plastic TO-220 (Standard)

(LTC DWG # 05-08-1421)

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

SW Package 20-Lead Plastic Small Outline (Wide 0.300) (LTC DWG # 05-08-1620)



NOTE:

- 1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS. THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
- *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
- **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

TYPICAL APPLICATION

Negative Buck Converter

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1171	100kHz, 2.5A Boost Switching Regulator	Good for V _{IN} Up to 40V
LT1370	500kHz, 6A Boost Switching Regulator	6A, 42V Internal Switch
LT1371	500kHz, 3A Boost Switching Regulator	3A, 42V Internal Switch, 90% Efficiency
LT1372	500kHz, 1.5A Boost Switching Regulator	Also Regulates Negative Flyback Outputs
LT1374	500kHz, 4.5A Buck Switching Regulator	V _{IN} Up to 25V, SO-8 Package
LT1376	500kHz, 1.5A Buck Switching Regulator	V _{IN} Up to 25V, Uses 4.7μH Inductor