Adjustable Output TFT-LCD Triple Switching Regulator

feATURES

- Complete Solution Under 1.2mm
- Develops Three Outputs from a 3.3V or 5V Supply
- Externally Programmable $\mathrm{V}_{\text {ON }}$ Delay
- Fixed Frequency Low Noise Outputs
- All Ceramic Capacitors
- 3MHz Switching Frequency
- Fast Transient Response
- Few External Components Required
- 2.7V to 8 V Input Range
- Adjustable $\mathrm{AV}_{\mathrm{DD}}$ and V_{ON} Voltages
- Tiny 10-Lead MSOP and Thermally Enhanced 10-Lead MSOP Packages

APPLICATIONS

- TFT-LCD Notebook Display Panels
- TFT-LCD Desktop Monitor Display Panels
- Digital Cameras
- Handheld Computers

DESCRIPTIOn

The LT ${ }^{\circledR} 1947$ is a highly integrated multiple output $\mathrm{DC} / \mathrm{DC}$ converter designed for use in TFT-LCD panels. The device contains two independent switching regulators. The main regulator has an adjustable output voltage with an internal 1.1A switch that can generate a boosted voltage as high as 30V. The second regulator's output is also adjustable up to 30 V and can deliver 10 mA for positive bias. A simple level-shift charge pump off the main switch node generates the negative bias voltage. An external capacitor sets the delay time from $A V_{D D}$'s final value to the rising edge at the $\mathrm{V}_{\text {on }}$ pin. The 3 MHzswitching frequency allows the use of tiny low profile chip inductors and capacitors throughout, providing a low noise, low cost total solution with all components under 1.2 mm in height. The device operates from an input range of 2.7 V to 8 V and is available in 10-lead MSOP and thermally enhanced 10 -lead MSOP packages.

[^0]
TYPICAL APPLICATION

Start-Up Waveforms

Figure 1. 3.3V Powered TFT-LCD Bias Generator

ABSOLUTE MAXIIMUM RATINGS

(Note 1)

VIN Voltage ... 8V
C_{T} Voltage
SW1, SW2 Voltage ..
$\mathrm{V}_{0 N}, \mathrm{~V}_{02}$ Voltage ... 30V

FB1, FB2 .. 3V
SHDN 8 V
Operating Temperature Range (Note 2) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InfORMATION

	ORDER PART NUMBER		ORDER PART NUMBER
	LT1947EMSE		LT1947EMS
	MSE PART MARKING		MS PART MARKING
	LTBQW		LTUE
Order Options Tape and Reel: Add \#TR, Lead Free: Add \#PBF, Lead Free Tape and Reel: Add \#TRPBF Lead Free Part Marking: http://www.linear.com/leadfree/			

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS
The \bullet denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{I N}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=3.3 \mathrm{~V}$ unless otherwise specified.

SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range			2.7		8	V
Supply Current	$\begin{aligned} & \text { SHDN }=2.4 \mathrm{~V} \\ & \text { SHDN }=0 \mathrm{~V} \end{aligned}$			9.5	$\begin{gathered} 12.5 \\ 1 \end{gathered}$	mA $\mu \mathrm{A}$
FB1 Voltage		\bullet	$\begin{aligned} & 1.240 \\ & 1.225 \end{aligned}$	1.26	$\begin{aligned} & 1.280 \\ & 1.295 \end{aligned}$	V
FB2 Voltage		\bullet	$\begin{aligned} & 1.225 \\ & 1.210 \end{aligned}$	1.26	$\begin{aligned} & 1.295 \\ & 1.310 \end{aligned}$	V
Reference Line Regulation	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 8 V			0.01	0.05	\%/V

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{I N}=3.3 \mathrm{~V}, \mathrm{~V}_{\overline{S H D N}}=3.3 \mathrm{~V}$ unless otherwise specified.

SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Error Amplifier Voltage Gain	EA1 and EA2		100			V/V
$\mathrm{C}_{\text {T }}$ Current Source	$\overline{\mathrm{V}_{\text {FB } 1}}=1.3 \mathrm{~V}$		4	5.5	6.5	$\mu \mathrm{A}$
$\mathrm{C}_{\text {T }}$ Threshold to Turn On Q3			1.25	1.28	1.30	V
FB1 Voltage to Begin C_{T} Charge			1.17	1.2	1.23	V
SW1 Current Limit	(Note 3)		1.1	1.4	2	A
SW2 Current Limit	(Note 3)		0.35	0.6	1	A
SW1 Saturation Voltage	$\mathrm{ISW}^{\text {W }}$ = 800 mA			0.230	0.280	V
SW2 Saturation Voltage	$\mathrm{I}_{\text {SW2 }}=300 \mathrm{~mA}$			0.3	0.36	V
SW1 Maximum Duty Cycle			82			\%
SW2 Maximum Duty Cycle				85		\%
Oscillator Frequency		\bullet	2.3	3	3.5	MHz
$\mathrm{V}_{\text {ON }}$ Switch Drop	$\mathrm{I}_{\text {Q3 }}=7 \mathrm{~mA}$			160	200	mV
SW1 Leakage Current	Switch Off, SW1 $=3.3 \mathrm{~V}$			0.01	5	$\mu \mathrm{A}$
SW2 Leakage Current	Switch Off, SW2 = 3.3V			0.01	5	$\mu \mathrm{A}$
SHDN Pin Bias Current	$\mathrm{V} \overline{\text { SHDN }}=2.4 \mathrm{~V}$			10	25	$\mu \mathrm{A}$
SHDN Pin High	Active Mode		2.4			V
SHDN Pin Low	Shutdown Mode				0.4	V

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: The LT1947 is guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating
temperature range are assured by design, characterization and correlation with statistical process controls.
Note 3: Switch current limit guaranteed by design and/or correlation to static tests.

TYPICAL PGRFORMANCG CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

1947 G04
Switch 1 Saturation Voltage

947 G06

1947 G08

SW2 Current Limit

1947 G05
Switch 2 Saturation Voltage

1947 G07

1947 G09

PIn functions

FB1 (Pin 1): Feedback Pin for First Switcher. Connect resistor divider tap here. Set $A V_{D D}$ according to: $A V_{D D}=1.26 \mathrm{~V}(1+\mathrm{R} 1 / \mathrm{R} 2)$.
FB2 (Pin 2): Feedback Pin for Second Switcher. Connect resistor divider 2 here and set $V_{O N}$ using: $V_{\text {ON }}=1.26 \mathrm{~V}(1+R 3 / R 4)-160 \mathrm{mV}$.
$\mathbf{C}_{\boldsymbol{T}}$ (Pin 3): Timing Capacitor Pin. Connecta 10nF capacitor from C_{\top} to ground to program a 2.3 ms delay from FB1 reaching 1.26 V to $\mathrm{V}_{\text {ON }}$ turning on.
SW1 (Pin 4): AV $\mathrm{DD}^{\text {Switch Node. Connect L1 and D1 here }}$ (see Figure 1). Minimize trace area at this pin to keep EMI down.

GND (Pin 5): Ground. Connect directly to local ground plane.
$\mathbf{V}_{\text {IN }}$ (Pin 6): Input Supply Pin. Must be bypassed with a ceramic capacitor close to the pin.

SW2 (Pin 7): V02 Switch Node. Connect L2 and D2 here. Minimize trace area at this pin to keep EMI down.
$\overline{\text { SHDN }}$ (Pin 8): Pull this pin low for shutdown mode. For normal operation, tie to a voltage between 2.4 V and 8 V .
V_{02} (Pin 9): SW2 Output. This node is also internally connected to the emitter of Q3 (see Block Diagram), the high side switch between V_{02} and V_{ON}.
$\mathrm{V}_{\mathbf{O N}}$ (Pin 10): This is the delayed output for second Switcher. $V_{\text {ON }}$ reaches its programmed voltage after the internal timer times out.

Exposed Pad (Pin 11): Ground (MSE package only). The exposed pad must be soldered to the PCB and electrically connected to ground.

BLOCK DIAGRAM

OPERATION

To best understand operation of the LT1947, please refer to the LT1947 Block Diagram. The device contains two switching regulators, a timer and a high side switch. Three outputs can be generated: an adjustable $A V_{D D}$ output, a charge-pumped inversion of the $A V_{D D}$ output called $V_{0 F F}$, and a time delayed adjustable output called $V_{\text {ON }}$. Q3 keeps $V_{\text {ON }}$ offfor an externally set time interval, set by a capacitor connected to the $\mathrm{C}_{\boldsymbol{T}}$ pin.
The switching frequency of both switchers is 3 MHz , set internally. The switchers are current mode and are internally compensated. The main $\mathrm{AV}_{\mathrm{DD}}$ switcher is current limited at 1.1A, while the second $V_{O N}$ switcher is limited to 350 mA . They share the same 1.26 V reference voltage. When the input voltage is below approximately 2.7 V , an undervoltage lockout circuit disables switching.
When $A V_{D D}$ is less than its final voltage, $Q 4$ is turned on, holding the C_{\top} pin at ground. When $\mathrm{AV}_{\mathrm{DD}}$ reaches final value, Q4 lets go of the C_{\top} pin, allowing the $5.5 \mu \mathrm{~A}$ current source to charge the external capacitor, C_{T}. When the voltage on the C_{T} pin reaches 1.28 V , Q 3 turns on, connecting V_{02} to V_{ON}. Capacitor value can be calculated using the following formula:

$$
C=\left(5.5 \mu \mathrm{~A} \cdot \mathrm{t}_{\mathrm{DELAY}}\right) / 1.28 \mathrm{~V}
$$

A 10 nF capacitor results in approximately 2.3 ms of delay.

Layout Hints

The high speed operation of the LT1947 mandates careful attention to layout for proper performance. Be sure to keep input capacitor C1 as close as possible to the IC and minimize trace area and length at the SW and FB pins. Always use a ground plane under the switching regulator to minimize interplane coupling. Figure 2 shows the recommended component placement.
The exposed pad of the MSE package must be soldered to the PCB and electrically connected to ground. Thermal vias to a large ground plane will lower the thermal resistance.

Soft-Start

For applications requiring soft-start, a circuit consisting of $\mathrm{R}_{S S}$ and $\mathrm{C}_{S S}$ tied to the SHDN pin can be used, as shown in Figure 3. For a combination of $33.2 \mathrm{k} / 33 \mathrm{nF}, \mathrm{AV}_{\mathrm{DD}}$ rises to its final value in approximately 3 ms .

Figure 2. Recommended Component Placement

Figure 3. RSS and C_{Ss} at $\overline{\text { SHDN }}$ Pin Provide Soft-Start

Figure 4. Start-Up Waveforms with Soft-Start Circuit Added

TYPICAL APPLICATIONS

TFT-LCD Bias Generator: 12V, 20V, -6V Output

TFT-LCD Bias Generator: 10V, 24V, -6V Output

MS Package
10-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1661)

PACKAGE DESCRIPTION

MSE Package
10-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1663)

TYPICAL APPLICATION

TFT-LCD Bias Generator: 7.5V, 15V, -10V Output

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1310	1.5A Isw, 4.5MHz, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}=2.75 \mathrm{~V}$ to 18V, $\mathrm{V}_{\text {OUT }} \mathrm{Max}=35 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=12 \mathrm{~mA}, \mathrm{I}_{\text {SHDN }}=<1 \mu \mathrm{~A}, \mathrm{MS} 10 \mathrm{E}$
LT1613	$550 \mathrm{~mA} \mathrm{I}_{\mathrm{sW}}, 1.4 \mathrm{MHz}$, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}=0.9 \mathrm{~V}$ to 10V, $\mathrm{V}_{\text {OUT }} \mathrm{Max}=34 \mathrm{~V}, \mathrm{I}_{Q}=3 \mathrm{~mA}$, $\mathrm{I}_{\text {SHDN }}=<1 \mu \mathrm{~A}$, ThinSOT
LT1615/LT1615-1	$300 \mathrm{~mA} / 80 \mathrm{~mA} \mathrm{I}_{\mathrm{sW}}$, Constant Off-Time, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$ to 15V, $\mathrm{V}_{\text {OUT }} \mathrm{Max}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}, \mathrm{I}_{\text {SHDN }}=<1 \mu \mathrm{~A}$, ThinSOT
LT1940	Dual Output 1.4A I IOUT, Constant 1.1MHz, High Efficiency Step-Down DC/DC Converter	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ to 25V, $\mathrm{V}_{\text {OUT }} \mathrm{Min}=1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.5 \mathrm{~mA}, \mathrm{I}_{\text {SHDN }}=<1 \mu \mathrm{~A}, \mathrm{TSSOP}-16 \mathrm{E}$
LT1944	Dual Output $350 \mathrm{~mA} \mathrm{I}_{\text {SW }}$, Constant Off-Time, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$ to 15V, $\mathrm{V}_{\text {OUT }} \mathrm{Max}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}, \mathrm{I}_{\text {SHDN }}=<1 \mu \mathrm{~A}, \mathrm{MS} 10$
LT1944-1	Dual Output $150 \mathrm{~mA} \mathrm{I}_{\text {SW }}$, Constant Off-Time, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$ to 15V, $\mathrm{V}_{\text {OUT }} \mathrm{Max}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}, \mathrm{I}_{\text {SHDN }}=<1 \mu \mathrm{~A}, \mathrm{MS} 10$
LT1945	Dual Output, Pos/Neg $350 \mathrm{~mA} \mathrm{I}_{\mathrm{sW}}$, Constant Off-Time, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$ to 15V, $\mathrm{V}_{\text {OUT }} \mathrm{Max}= \pm 34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}, \mathrm{I}_{\text {SHDN }}=<1 \mu \mathrm{~A}, \mathrm{MS} 10$
LT1946/LT1946A	$1.5 \mathrm{~A} \mathrm{I}_{\mathrm{SW}}, 1.2 \mathrm{MHz} / 2.7 \mathrm{MHz}$, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}=2.45 \mathrm{~V}$ to 16V, $\mathrm{V}_{\text {OUT }} \mathrm{Max}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=3.2 \mathrm{~mA}, \mathrm{I}_{\text {SHDN }}=<1 \mu \mathrm{~A}, \mathrm{MS8}$
LT1949/LT1949-1	$550 \mathrm{~mA} \mathrm{I}_{\mathrm{SW}}, 600 \mathrm{kHz} / 1.1 \mathrm{MHz}$, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}$ to 12V, $\mathrm{V}_{\text {OUT }} \mathrm{Max}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=4.5 \mathrm{~mA}, \mathrm{I}_{\text {SHDN }}=<25 \mu \mathrm{~A}, \mathrm{MS8}$, S8
LTC3400/LTC3400B	$600 \mathrm{~mA} \mathrm{I}_{\mathrm{SW}}, 1.2 \mathrm{MHz}$, Synchronous Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}=0.85 \mathrm{~V}$ to 5 V , $\mathrm{V}_{\text {OUT }} \mathrm{Max}=5 \mathrm{~V}, \mathrm{I}_{\text {Q }}=19 \mu \mathrm{~A} / 300 \mu \mathrm{~A}, \mathrm{I}_{\text {SHDN }}=<1 \mu \mathrm{~A}$, ThinSOT
LTC3401	$1 \mathrm{~A} \mathrm{I}_{\text {Sw }}$, 3MHz, Synchronous Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$ to $5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{Max}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=38 \mu \mathrm{~A}, \mathrm{I}_{\text {SHDN }}=<1 \mu \mathrm{~A}, \mathrm{MS} 10$
LTC3402	2 A Isw, 3MHz, Synchronous Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$ to $5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{Max}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=38 \mu \mathrm{~A}, \mathrm{I}_{\text {SHDN }}=<1 \mu \mathrm{~A}, \mathrm{MS} 10$
LTC3423	1A Isw, 3MHz, Low V ${ }_{\text {OUt }}$, Synchronous Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$ to $5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{Max}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=38 \mu \mathrm{~A}, \mathrm{I}_{\text {SHDN }}=<1 \mu \mathrm{~A}, \mathrm{MS10}$
LTC3424	2A Isw, 3MHz, Low V OUT , Synchronous Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$ to $5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{Max}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=38 \mu \mathrm{~A}, \mathrm{I}_{\text {SHDN }}=<1 \mu \mathrm{~A}, \mathrm{MS10}$

[^0]: $\boldsymbol{\mathcal { Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

